
White Paper: Using the HyperSizer Object Model for Software Integration 1 of 15
December, 2001

 © 2001 Collier Research Corporation

White Paper:
Using the HyperSizer Object Model for Software
Integration
Phil Yarrington, Craig Collier, Mark Pickenheim
Collier Research Corporation
December 2001

Introduction
A capability is now included in HyperSizer that allows it to be called from many other
software products. This new capability, called the Object Model, was developed to
address HyperSizer’s inability to operate without its graphical user interface in a non-
interactive or heterogeneous network environment.

The HyperSizer Object Model is built on COM and ActiveX, the core technologies of
Microsoft Windows, on which nearly all Windows programs are built. This means that it
integrates very smoothly with Windows programs. In addition, distributed computing
technologies are readily available (DCOM, Java RMI, Enterprise Java Beans, CORBA,
ModelCenter, iSIGHT) which expose the HyperSizer Object Model over heterogeneous
networks that include UNIX, Linux, and Windows workstations.

The HyperSizer Object Model has successfully been integrated with Microsoft Excel
(actually works with any Microsoft Office product), Mathcad, Microsoft Visual Basic,
and Microsoft C++. HyperSizer analyses
were successfully performed from SGI
Unix workstations using Java and its
built-in Remote Method Invocation
(RMI). One of the key motivations for
the development of the Object Model is
that it enables HyperSizer to become part
of a large multi-disciplinary design
system, as shown in Figure 1. NASA
successfully integrated HyperSizer into
its own heterogeneous, multidisciplinary
batch design system, called the
Environment for Launch Vehicle
Synthesis (ELVIS), by calling HyperSizer
from Phoenix Integration’s Analysis
Server and ModelCenter software.

Figure 1: The HyperSizer Object Model enables
HyperSizer to become part of a large multi-
disciplinary analysis and design system

White Paper: Using the HyperSizer Object Model for Software Integration 2 of 15
December, 2001

 © 2001 Collier Research Corporation

Object Model Overview
In the past, HyperSizer ran strictly as an interactive program. Two motivations led to the
development of the Object Model. First was the inability of HyperSizer to be called in a
non-interactive, batch environment. The second related motivation was to allow
HyperSizer to be integrated into a large design process on a heterogeneous network of
computers. A traditional approach to these problems might be to interface codes by
passing input and output ASCII files from one process to another and tie them together
with a scripting language. We do not view this approach as commercially dependable
due to lack of robustness and maintainability, two factors that are especially important
because HyperSizer is being used by NASA and industry for analysis and design of next
generation structures. Our preferred approach is to integrate HyperSizer using distributed
objects or web based solutions, rather than relying on passing and parsing of data files.

HyperSizer has always been a native Microsoft
Windows application built on Microsoft COM and
ActiveX technology. COM stands for Component
Object Model and is the object model on which all
native Windows applications, including the
operating system itself, is based. ActiveX,
formerly known as OLE (or Object Linking and
Embedding), is the technology that enables one
process or object to use functions or properties
from another process or object. For example,
ActiveX enables spreadsheets developed using MS
Excel to be embedded into MS Word documents.

Because HyperSizer is built on ActiveX, much of its functionality has been exposed to
outside processes as an ActiveX Automation Server. This means that client programs,
built using any COM aware programming language, can instantiate (or create) objects
from this server and ask these objects to perform functions. For example, a Java applet
can open a HyperSizer database (using a HyperSizer Application object), retrieve a list
of HyperSizer projects, and export the materials used by a particular project. The same
Java applet could automatically size a structural component using a Component object.
The HyperSizer server is intended to provide batch functions that can be executed
repetitively without user intervention.

With the proper license, the HyperSizer Object Model is available on any computer
where HyperSizer is installed. It can be referenced by any COM aware application (e.g.
MS Excel) or programming language (e.g. Visual Basic, Java, C++). Once installed on a
Windows computer, the Object Model can be accessed using any of the Client-Server
technologies shown in Figure 2, which illustrates the various ways the Object Model is
exposed to a heterogeneous environment of mixed computing platforms (Windows, Unix,
etc).

NASA and other customers have
successfully integrated our
software with:

• Unix and Linux
Workstations

• Excel (MS Office)
• Visual Basic, C++
• Java
• Mathcad
• ModelCenter / Analysis

Server

White Paper: Using the HyperSizer Object Model for Software Integration 3 of 15
December, 2001

 © 2001 Collier Research Corporation

SOAP and XML
over HTTP

Enterprise Java
Beans (ejb),
and/or RMI

CORBADCOM remote
Creation

text

A Workstation
running Windows

NT/2000

Phoenix
Integration

Model
Center Windows, Unix,

Linux,..

HyperSizer
Client

Windows (or
Unix with Unix
COM library) Windows, Unix,

Linux,..

HyperSizer
Client

Windows, Unix,
Linux,..

HyperSizer Server
Database, Local Files,
GUI, Fortran Engine

IIS Web
Server

Phoenix
Integration
Analysis
Server

JAVA Virtual
Machine

HyperSizer
Client

HyperSizer
Client

Windows, Unix,
Linux,..

HyperSizer
Client

JAVA Virtual
Machine

COM distributed
objects

Collier Research Corp. 1-16-01

Figure 2: The HyperSizer Object Model exposes HyperSizer to a heterogeneous network of computers
with a variety of connection protocols. In the figure, each box represents a different workstation, some
running Windows XP/2000/NT and some running UNIX or Linux. The connections between the
platforms represent various connection protocols such as SOAP-XML, JAVA, etc.

White Paper: Using the HyperSizer Object Model for Software Integration 4 of 15
December, 2001

 © 2001 Collier Research Corporation

Object Model Description
A simplified graphical version of the HyperSizer
Object Model is shown in Figure 3. The process
begins by creating an instance of an Application
object. This is the only object that can be instantiated
independently, i.e. not through another HyperSizer
object. Once the Application object is instantiated, all
other HyperSizer objects are instantiated through
methods or properties of the Application object or
from methods or properties of one of its children.
Once an Application object is created, the next step is
to get a reference to a Project object using the
Projects property of the Application object (this
property is written as ‘Application.Projects’). The
Project object can refer to an existing HyperSizer
project, or a newly created one. Using this Project
object, the calling program can modify, size and/or
extract data from the project or use the object to get
references to Group, Assembly or Component
Objects. Each of these objects can, in turn, be used to modify, size and/or extract data
from various pieces of the structure.

Application

Project

Group

Component

Assembly
Material
Objects

Figure 3: Simplified HyperSizer Object Model

Through the Object Model, most
entities can be:

• Created or deleted
• Queried for properties or

results
• Updated with new

properties
• Analyzed / Sized

Available Objects Include:

• Projects
• Assemblies
• Optimization Groups
• Structural Components
• Load Sets / Load Cases
• Materials

White Paper: Using the HyperSizer Object Model for Software Integration 5 of 15
December, 2001

 © 2001 Collier Research Corporation

A typical program for modifying the buckling lengths of a series of HyperSizer
components in a project called “Ap1 Demo”, re-sizing them, and getting the Margins of
Safety, might look like the following:

Start Program

Set variable AppObject = new Application Object

Set variable ProjectObject = Project object created from Projects property of

AppObject (referring to the project named “Ap1Demo”)

Set variable GroupObject = Group object created from the Groups property of the

Project object

Set variable Components() = Collection of component objects created from

Components property of GroupObject

For Each ComponentObject in the Components() collection:

 Set ComponentObject.PanelProperty(“BucklingLength”) = New Buckling Length
 Save the new buckling length to the database (GroupObject.Save)
 Size the component (ComponentObject.Size)
 Set variable MOS = ComponentObject.PanelResult(“Minimum MOS”)
 Output (to screen, file, etc.) ComponentObject.Name, MOS

Next ComponentObject

Release the object variables Components, GroupObject, ProjectObject, AppObject

End Program

The execution of this pseudo-code creates an Application object, then uses this object to
get a Project object, which is used to get a Group object. The Group object in turn gets a
collection of Component objects. Then for each component object, the buckling length is
modified, the component is resized, and the margin of safety is reported.

White Paper: Using the HyperSizer Object Model for Software Integration 6 of 15
December, 2001

 © 2001 Collier Research Corporation

Figure 4: Objects available
through the HyperSizer Object
Model (*A class is an object
oriented programming concept
which refers to a template or
blueprint for creating an
object)

Figure 5: Properties and methods of
the Component object

*

Although the pseudo-code and simplified Object
Model diagram of Figure 3 might make the
capability look rather limited, the Object Model is
actually quite deep and exposes most of the
functionality of the HyperSizer software.
Snapshots of the Object Model as seen in the
“Object Browser” of the Microsoft Excel Visual
Basic editor are shown in Figures 4 and 5. Each
item in the Figure 4 list is an object that can be
instantiated through the object model. Each object
has multiple properties and methods that are used to
modify data, size components, groups, assemblies,
and projects and extract results. For example, the
methods and properties of the Component object are
shown in Figure 5.

White Paper: Using the HyperSizer Object Model for Software Integration 7 of 15
December, 2001

 © 2001 Collier Research Corporation

Object Model Examples
Several examples of using the Object Model are described in the following pages. In the
first example, it is used to solve a global beam spacing optimization problem, which
demonstrates the functionality added to the standard interactive HyperSizer. The
optimization example illustrates how the HyperSizer Object Model is called from three
different software packages, Excel, MathCAD, and Analysis Server/ModelCenter. Next,
Java is used to call HyperSizer and create and size an entire project. Finally, a demo
created for the NASA Environment for Launch Vehicle Synthesis (ELVIS) shows how
HyperSizer fits into a larger design system.

Frame Spacing Optimization
Problem Description
In this first example, a curved hat-stiffened panel, representative of a typical SLI/RLV
cylindrical fuselage section is subjected to a compressive axial load. J-Beam ringframes
are attached to the skin with a given frame spacing as illustrated in Figure 6. Given the
ringframe spacing and associated axial loads, the interactive HyperSizer product is able
to analyze and optimize the detail design (facesheet, flange and web thickness, hat
spacing, materials, etc.) of the frames and the stiffened panel separately. However, it is
not aware of the relationship between the weight of the combined structure and the
distance between the ringframes. The sizing of the stiffened panel is principally
controlled by longitudinal panel buckling, which means that the panel weight increases as
the buckling length increases (i.e. the ringframe spacing increases). Therefore, the
optimum weight of the stiffened panel alone is obtained by minimizing the ringframe
spacing. However, as the ringframe spacing decreases, the number of frames per unit

X(longitudinal)

Y (transverse)

Z

J stiffeners

Hat stiffeners

Figure 6: SLI/RLV Fuselage frame spacing problem

White Paper: Using the HyperSizer Object Model for Software Integration 8 of 15
December, 2001

 © 2001 Collier Research Corporation

longitudinal length increases, and the weight for the J-Beams goes up. The following
example applications call HyperSizer to size the stiffened skin and ringframes in an
iterative process to arrive at an optimum system weight. They are used to illustrate
several ways of interfacing with the HyperSizer Object Model. First, the optimization is
solved using the non-linear “solver” capability of Microsoft Excel. Second, MathCAD is
integrated with the Object Model to document the equations used by this example.
Finally, the optimization is solved using the built-in optimizer of Phoenix Integration’s
ModelCenter.

Excel non-linear solver implementation
A spreadsheet was built that uses Excel’s non-linear solver to optimize the beam spacing.
The spreadsheet has an underlying Macro code written in Visual Basic for Applications
(VBA) that interfaces with the HyperSizer Object Model. A snapshot of the spreadsheet
with a snippet of the VBA code is shown in Figure 7. In the non-linear solver, the cell
targeted for minimization is E37 (the total system unit weight) and the only cell changed
by the solver is B30 (the frame spacing). As the solver changes the frame spacing, the
beam and panel unit weights (column C) are solved by calling the HyperSizer Object
Model through the VBA macro. The spreadsheet then smears the ringframe weights
(which are in pounds per foot) into area unit weights and calculates the total system unit

Figure 7: Excel spreadsheet optimization of the SLI/RLV ringframe spacing

Minimum weight = 4.18 lb/ft2

White Paper: Using the HyperSizer Object Model for Software Integration 9 of 15
December, 2001

 © 2001 Collier Research Corporation

weight. As the solver changes the frame spacing, the unit weight for the current iteration
is added to the “Iteration History” graph in the spreadsheet. The graph of iteration history
in Figure 7 shows how the software quickly iterates to an optimum frame spacing for this
particular loading scenario of 37.2 inches with a corresponding system unit weight of
4.18 pounds per square foot.

Implementing HyperSizer’s panel optimization is relatively straightforward. Sizing of the
J-Beam ringframes is discussed in the next section as the Object Model is called from
another software product, MathCAD.

MathCAD implementation
Because the loads in the fuselage are orthogonal to the J-Beam ringframes, the actual
load in these beams is relatively low. However, a danger of under designing these beams
is that general instability of the fuselage can occur as depicted in the bottom image of
Figure 8. Michael Niu’s book on aircraft design [1] has a very simplistic method for
determining the beam stiffness required to prevent general instability.

The equations from [1] were
implemented in a MathCAD
document as shown in Figure 9.
Niu’s equations yield a total
equivalent stiffness (EI) that is
required for the ringframes. In
the bottom part of the MathCAD
document, the equivalent
stiffness calculated from this
equation, along with the frame
spacing, are sent to the Object
Model to solve for panel and
beam weights.

This MathCAD document is not
an optimization of the ringframe
spacing, but rather documents the
panel and beam local sizing for a
given spacing. It demonstrates
how HyperSizer can be called
from MathCAD in a flexible
environment for creating
documentation and stress reports.

Figure 8: J-Beam ringframes are sized to prevent
fuselage general instability (from Ref. [1])

White Paper: Using the HyperSizer Object Model for Software Integration 10 of 15
December, 2001

 © 2001 Collier Research Corporation

ModelCenter Implementation
As a final example using the fuselage ringframe spacing example, the same problem is
solved using Analysis Server and ModelCenter from Phoenix Integration. This solution
is essentially the same as the Excel non-linear solver solution described earlier, except
that in this case, a ModelCenter Optimizer component was used to minimize the system
weight.

The first step is to build Analysis Server wrappers that expose HyperSizer Object Model
to ModelCenter. Analysis Server wrappers are ASCII text files that describe the interface

Figure 9: Mathcad implementation of stiffened skin and ringframe sizing

White Paper: Using the HyperSizer Object Model for Software Integration 11 of 15
December, 2001

 © 2001 Collier Research Corporation

of a program (like HyperSizer) to the Analysis Server application. Once the wrappers
were built and Analysis Server running, they were plugged into ModelCenter and tied
together with an “Optimizer” component. Two wrappers for the Object Model were
made, called HyperSizerPanel and HyperSizerBeam, which are used to size the stiffened
panel and the J-Beam ringframes respectively. The ModelCenter optimizer iteratively
calls these two wrappers and sums up the resulting unit weights to get an overall system
unit weight. The convergence on an optimum spacing can be seen in the attached “Data
Collector” window.

One of the features of Analysis Server that makes this a powerful solution, is that once
the HyperSizer Object Model is exposed through an Analysis Server wrapper, it is
automatically available not only to ModelCenter on the machine where HyperSizer is
installed, but also from other platforms on the same network, including Windows and
Unix workstations.

Figure 10: ModelCenter optimization of the SLI/RLV ringframe spacing

ModelCenter’s
optimizer did a
better job of finding
the “true” minimum
(at 42.2"), where
Excel’s solver
actually returns a
“local” mimimum (at
37.2").

White Paper: Using the HyperSizer Object Model for Software Integration 12 of 15
December, 2001

 © 2001 Collier Research Corporation

HyperSizer Object Model called from Java
The Object Model can be called from Microsoft COM aware applications such as Excel,
MathCAD and ModelCenter, but it can also be called from many modern programming
languages such as Visual Basic, C++ and Java. As an example, a Java program was built
that creates and analyzes a HyperSizer project from scratch. Figure 11 shows a snapshot
of the output from the Java program. The significance of this example is that it
demonstrates how a HyperSizer project can be built and analyzed from the beginning
including import of a finite element model, assignment of structural components to
optimization groups, specification of optimization parameters and assigning user-defined
loads without user intervention. This type of automation makes it possible to include
HyperSizer in a large multi-disciplinary design system where the overall design is
repeatedly changed and must be re-analyzed and re-sized by HyperSizer in automated
batch sessions.

Figure 11: Complete project creation and sizing using the HyperSizer Object Model and Java

White Paper: Using the HyperSizer Object Model for Software Integration 13 of 15
December, 2001

 © 2001 Collier Research Corporation

HyperSizer ELVIS Demo
In the final example, the Object Model was used to integrate HyperSizer into the
Environment for Launch Vehicle Synthesis (ELVIS) Development program at NASA
Langley*. ELVIS uses Analysis Server and ModelCenter to integrate codes together and
enable multi-disciplinary analyses to take place across a heterogeneous network of mixed
UNIX-Windows computers. HyperSizer was integrated into the Advanced Structures
subtask of ELVIS, with the focus of quickly analyzing and predicting structural weights.
This subtask integrates a NASA vehicle sizing code called CONSIZ, SDRC I-DEAS®
for CAD and FEA, and HyperSizer for detail design.

A ModelCenter component with the name “HyperSizer” was developed, which accesses
the HyperSizer Object Model and fits directly into the larger Advanced Structures
ModelCenter model. This component is further broken down into three sub-components,
as shown in Figure 12. As the Advanced Structures model runs, a finite element model is
built and solved automatically in I-DEAS to get internal load paths. The first HyperSizer
sub-component, called “ProjectSetup,” creates a new HyperSizer project called “ELVIS
Demo”, imports this I-DEAS finite element model and sets up the HyperSizer load cases.
The second sub-component, called “GroupSetup,” creates optimization groups in the new
project, assigns optimization parameters and bounds, and assigns structural components
to those groups. The final sub-component, “Size,” sizes all of the structural components
in the model and returns the overall structural weight and the weight breakdown by

* ELVIS development has been funded by the NASA High Performance Computing and Communications
Program (HPCCP)

Creates HyperSizer
project and imports

I-DEAS FEM Creates and
initializes

optimization groups

Sizes all project
structural components

and reports weights

Result:
Project Average
Unit Weight

Figure 12: The HyperSizer ModelCenter component creates a new HyperSizer project, imports a
finite element model sets up optimization groups and sizes all structural components

White Paper: Using the HyperSizer Object Model for Software Integration 14 of 15
December, 2001

 © 2001 Collier Research Corporation

structural component back to the Advanced Structures model.

During execution of the HyperSizer ModelCenter component, HyperSizer automatically
determines controlling failure modes, margins of safety, optimum unit weights, etc. for
all structural components based on the internal loads generated from the I-DEAS Finite
Element Analysis. The HyperSizer snapshot shown in Figure 13 shows the controlling
failure analyses on a full finite element model resulting from execution of the HyperSizer
ModelCenter component.

Figure 13: Structural sizing results from the HyperSizer ModelCenter component

White Paper: Using the HyperSizer Object Model for Software Integration 15 of 15
December, 2001

 © 2001 Collier Research Corporation

Other Potential Applications of the Object Model

The HyperSizer Object Model opens up many opportunities for integration of HyperSizer
into other processes or to solve other problems. Some examples include:

• HyperSizer could become a core component in a structural design system such as
the Common Structures Workstation at Boeing or the Virtual Prototyping
software at Lockheed Martin by calling HyperSizer directly through the Object
Model.

• Wing tip displacement optimization – HyperSizer currently has displacement

failure criteria on a component by component basis where each component is
sized independently of its neighbors. Using the Object Model, displacements
and/or curvatures for components along the span of a wing could be chained to
obtain a global displacement criterion.

• Flywheel optimization – The loads on flywheel structural components could be

dynamically updated and passed to HyperSizer to account for centripetal force.

• Global optimization response surface generation – The ability of the Object

Model to be called many times for local sizing optimization without user-
interaction enables the generation of response surfaces for perturbations on design
variables. This would allow HyperSizer results to be used in tools like
MSC/NASTRAN® Solution 200 or Genesis® from Vanderplaats Research and
Development for global optimization.

• Elaborate equations defined in MathCAD or MatLab for defining internal loads

based on trajectory and geometric shape parameters.

References
[1] Niu, M. Airframe Structural Design, Conmilit Press Ltd., 1988, p. 378.

	Introduction
	Object Model Overview
	Object Model Description
	Object Model Examples
	Frame Spacing Optimization
	HyperSizer Object Model called from Java
	HyperSizer ELVIS Demo

	Other Potential Applications of the Object Model

