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This paper outlines a method for the stress analysis of bonded composite corrugated 
panel facesheet to flange joints.  The method relies on the existing HyperSizer Joints 
software, which analyzes the bonded joint, along with a beam analogy model that provides 
the necessary boundary loading conditions to the joint analysis.  The method is capable of 
predicting the full multiaxial stress and strain fields within the flange to facesheet joint and 
thus can determine margins and evaluate delamination.  Results comparing the method to 
NASTRAN finite element model stress fields are provided. 

 
 
 

I. Introduction 
 

RELIMINARY design of corrugated panels requires the rapid consideration of a wide range of panel 
configurations (materials, layups, facesheet thicknesses, stiffener geometries, etc.) to determine the optimum 

design for a given set of loads.  To assess the efficiency of a given panel design, ply-level stresses are used in one or 
more failure criteria to estimate the panel design’s minimum margin with respect to failure, given panel level loads.  
The standard method of determining ply-level stresses, finite element analysis, however, is not well suited for the 
rapid consideration of (sometimes) thousands of potential panel designs in which the geometry is not fixed.  In 
contrast, the HyperSizer Structural Sizing Software1 uses rapid, closed-form solution methods on the level of the 
panel, laminate, and ply to evaluate panel margins and determine the optimum lightweight design.  This software 
still relies on a global finite element model to determine the panel level loads, but it calculates the internal stresses 
within the panel based on efficient analytical solutions. 

The present paper is concerned with the local stresses that arise within the bonded joint that exists between the 
facesheet and stiffener flanges in a composite corrugated stiffened panel.  Existing HyperSizer capabilities analyzed 
corrugated panels using the ply-level stresses in each component of such a stiffened panel (e.g., stresses in the 
flange, web, crown, and facesheet), but did not consider stress concentrations due to the facesheet-stiffener bond.  
To address this limitation, the methodology described herein combines an existing bonded joint analysis capability 
within the software with a beam analogy analysis of the corrugated panel geometry.  The beam analogy analysis 
provides the boundary loads, which vary based on the panel configuration, to the joint analysis.  The joint analysis 
then calculates ply-level in-plane and interlaminar stresses and adhesive stresses that arise in the joint between the 
facesheet and stiffeners, which can be used to determine ply-level margins.  This new capability has been 
incorporated within HyperSizer, enabling sizing based on global load cases down to the level of the stress 
concentrations arising due to the bond of each stiffener in each panel.  Results are presented that compare local 
stress concentrations predicted by HyperSizer to those predicted using continuum finite element models to represent 
the facesheet to stiffener flange joint of several corrugated panel configurations. 

 
 

                                                 
1 Senior Research Engineer, 45 Diamond Hill Rd., AIAA Member, Phil.Yarrington@hypersizer.com 
2 Senior Research Engineer, AIAA Senior Member, Craig.Collier@hypersizer.com 
3 Materials Research Engineer, 21000 Brookpark Rd., 49-7, AIAA Senior Member, Brett.A.Bednarcyk@nasa.gov 

P 

49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
7 - 10 April 2008, Schaumburg, IL

AIAA 2008-2092

Copyright © 2008 by Collier Research Corp. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



 
 

 
American Institute of Aeronautics and Astronautics 

2

II. Joint Analysis Model 
 

The joint analysis model employed is based on Mortensen's unified stress analysis method2,3, which has been 
extended and implemented in the HyperSizer Joints composite bonded joint analysis software.  Extensions include 
accommodation of transverse in-plane straining, hygrothermal loads, computation of the local in-plane and 
interlaminar stresses throughout the adherends, accommodation of pressure loading, and delamination prediction4-9. 
Compared to other analytical (i.e., non-FEA) methods used for bonded joint analysis, the HyperSizer method is 
capable of handling more general situations, including various joint geometries, asymmetric and unbalanced 
laminates, and more general loading and boundary conditions. A wide range of joint types may be considered, and 
the adherends, which were originally modeled as classical laminates in cylindrical bending, are now considered to 
undergo ‘generalized cylindrical bending’, in which transverse straining is accommodated.  Both linear and 
nonlinear behavior of an adhesive layer is admitted in the analysis. For linear analysis, the adhesive layer is modeled 
via a traction-separation law that responds similarly to the linear behavior cohesive elements within the ABAQUS 
finite element software10.  This can be used to simulate a physical adhesive layer present in the joint, or, for cases 
without a non-negligible adhesive layer, the traction-separation model represents a zero-thickness cohesive layer 
that can be given a high penalty stiffness to hold the adherends together11.  Inclusion of nonlinear adhesive behavior 
in the analysis is accomplished through the use of a secant modulus approach for the nonlinear tensile stress–strain 
relationship in conjunction with a yield criterion. 

The equilibrium equations for each joint type are derived through direct imposition of force and moment 
equilibrium on joint elements, and by combination of the aforementioned equations and relations, a set of governing 
ordinary differential equations is obtained. The governing system of equations is solved numerically using 
Mortensen and Thomsen’s3 ‘multi-segment method of integration,’ yielding laminate-level fields and adhesive 
stresses that vary along the joint in each adherend. After the governing equations are solved, the ply-level in-plane 
stress components in the adherends can be calculated from Classical Lamination Theory (CLT).  After solving for 
the in-plane stresses, the interlaminar stress components in the adherends are obtained through integration of the 
point-wise equilibrium equations. The details of HyperSizer’s stress analysis method are described by Zhang et 
al.5,8.  It is important to recognize that the HyperSizer joint analysis method is very efficient; the execution time for a 
typical problem is approximately 1/40 second.  Furthermore, problem set up and post-processing is straightforward, 
enabling rapid consideration of a wide range of joint configurations for sizing optimization.   

In order to model the flange to facesheet joint within a composite corrugated panel, appropriate boundary loading 
conditions must be applied within the HyperSizer Joints analysis.  As shown in Fig. 1, the analysis domain for a hat 
stiffened panel is the flange and facesheet region, where the closed span and web attachments to the analysis domain 
are accounted for through the boundary loading conditions.  This region is, in essence, a bonded doubler, which can 
be analyzed by HyperSizer Joints.  A two sheet corrugated panel (which has continuous flanges between the hats) is 
shown in Fig. 2.  The analysis region is again a bonded doubler.  The next section describes the determination of the 
appropriate boundary loads to apply (BCs #2 and #3 in Fig. 1 and BCs #1 and #4 in Fig. 2) within the HyperSizer 
Joints analysis. 

 
III. General Solution for Boundary Loads 

 

The goal of this section is to determine the internal forces and moments in the components of a corrugated 
stiffened panel subjected to an applied shear force (V), an applied distributed load (force per unit length) due to 
internal pressure (P), and either an applied normal force (F) and moment (M) or a symmetry condition resulting in a 
normal reaction force (F) and moment (M) at point H, as shown in Fig. 3.  Note that point H is the midpoint between 
the corrugations (see Fig. 3).  For a two sheet corrugated panel, which has no open span, Los is set to zero.  A beam 
analogy model is used to determine the internal forces and moments, the knowledge of which provides the unknown 
applied boundary conditions indicated in Figs. 1 and 2.  The two separate boundary conditions (applied force and 
moment vs. symmetry) are discussed in Sections III.A and III.B below.  It should be notes that in the following 
beam analogy model, the direction along the facesheet is referred to as the x-direction (fig. 3), while in the joint 
analysis, this is the y-direction (Figs. 1 and 2). 

In Fig. 3, member BD is referred to as the closed span (cs), member AB is referred to as the web (w), member 
AC is referred to as the crown (cr), member GB is referred to as the facesheet-flange combination (com), and 
member HG is referred to as the open span (os).  Symmetry conditions are applied at points D and C that allow z-
direction translation (w), but no x-direction translation (u) and no rotation.  The model is restrained against w 
displacement at point B, the intersection between the hat flange and web.  This choice was motivated by comparison 
to finite element analysis results for acreage deformation of a hat stiffened panel model subjected to pressure 
loading.  Note that neither horizontal (x-direction) translation nor rotation is restrained at point B. 
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Fig. 1.  Analysis geometry for a composite hat stiffened panel facesheet to flange joint. 
 

 
Fig. 2.  Analysis geometry for a composite two sheet stiffened panel facesheet to flange joint. 

 
 

 
A. Applied Force and Moment Boundary Conditions between Corrugations 

A free body diagram of the analysis geometry is considered, as shown in Fig. 4.  Applying global equilibrium, 
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Fig. 3.  Analysis geometry for a hat stiffened panel 
 
 
 
 
 

 

 
Fig. 4. Global free body diagram of the hat stiffened panel analysis geometry. 
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 0 0x x xF D F C= → − + =∑  (2) 
 

 
2

. 0 0
2 8pt D D C x z cs
S SM M M hC V P M B L= → + + + − − − =∑  (3) 

 
Substituting for Bz in Eq. (3) using Eq. (1), 
 

 
2

0
2 2 8D C x cs cs
S S SM M hC V L P L M

⎛ ⎞⎛ ⎞+ + + − + − − =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4) 

 
Next a free body diagram of member HGBD is considered (as shown in Fig. 5), and equilibrium is applied, 

 

 0 0
2z z z
SF B BA P V= → − + − =∑  (5) 

 
 0 0x x xF D F BA= → − + =∑  (6) 
 
Combining Eqs. (5) and (1) gives, 
 
 0zBA =  (7) 
 
and combining Eqs. (6) and (2) gives, 
 
 x xBA C=  (8) 
 
Therefore, equilibrium has established the relationship among the forces in the members, as well as one equation (4) 
relating the moments.  Considering ,x CC M , and DM  to be the unknown quantities in the formulation, two 
additional equations are needed in addition to Eq. (4).  These equations will be obtained by applying beam theory 
deformation equations while imposing continuity of rotations and x-direction displacements at point B. 

It is noted from the boundary condition at point D depicted in Fig. 3 that the x-direction displacement and the 
rotation of member BD at point D are zero.  Considering the free body diagram of a section of member BD as shown 
in Fig. 6, and introducing a new x̂  coordinate direction, 

 
 
 
 

 
 

Fig. 5.  Free body diagram of member HGBD (closed span, facesheet-flange combination, and open span) 
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Fig. 6.  Free body diagram of a section of member BD. 

 
 
 ˆ0z csF V P x= → =∑  (9) 
 

 
2

.
ˆˆ 0
2pt D D cs cs
xM M M V x P→ − + − =∑  (10) 

 
Combining Eqs. (9) and (10), 
 

 
2ˆ

2cs D
xM M P= +  (11) 

 
Beam theory12 enables the internal moment within the closed span to be related to the second derivative of the z-
direction deformation (w) of the web as, 
 

 
( ) ( )2 2

2

ˆ ˆ ˆ1
ˆ 2D

cs cs cs cs

d w x M x xM P
dx E I E I

⎡ ⎤
= = +⎢ ⎥

⎣ ⎦
 (12) 

 
where csE  is the effective plane strain Young’s modulus of the closed span in the x-direction, and csI  is the area 
moment of inertia of the closed span face normal to the x-direction.  Note that the plane strain Young’s modulus 
differs from the standard Young’s modulus by a factor of (1 xy yxν ν− )-1.  For a composite laminate, this value can 
easily be determined from classical lamination theory.  Integrating Eq. (12) and imposing the zero rotation boundary 
condition at point D gives, 
 

 
( ) 3ˆ ˆ1 ˆ
ˆ 6D

cs cs

dw x xM x P
dx E I

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
 (13) 

 
which allows the rotation at point B (measured as positive in the clockwise direction) to be written as, 
 

 
( ) 3ˆ

ˆ 6
cs D cs cs

B
cs cs cs cs

dw x L M L P L
dx E I E I

θ
=

= = +  (14) 

 
The axial (x-direction) deformation at point B is due to the axial force in member BD, and can be written as, 
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 x x
B cs cs

cs cs cs cs

D C Fu L L
E A E A

−
= − =  (15) 

 
where Eq. (2) has been employed. 

Next, equations for the rotation and x-direction displacement at point B will be developed by considering the 
deformation of members AC (crown) and AB (web).  Equating these expressions with Eqs. (14) and (15) will 
provide the two additional equations required to determine ,x CC M , and DM . 

It is noted from Fig. 3 that, although the boundary condition at point C allows z-direction translation, no rotation 
is permitted at this point.  Thus, the bending and rotation of member AC (crown) is due to the constant internal 
moment, CM , while the axial deformation is due to the axial force, xC  (see Fig. 7).  Therefore, the rotation, z-
direction displacement, and axial displacement at point A can be written as12, 
 

 C cr
A

cr cr

M L
E I

θ =  (16) 

 

 
2

2
C cr

A C
cr cr

M Lw w
E I

= +  (17) 

 

 x
A cr

cr cr

Cu L
E A

= −  (18) 

 
where crE  is the effective plane strain Young’s modulus of the crown in the x-direction, and crI  is the area 
moment of inertia of the crown face normal to the x-direction, and wC is the z-direction displacement at point C. 

The web-crown combination (member BAC) is dismembered as shown in Fig. 8.  A new, primed 
coordinate system is introduced for the web (member AB), with the x’-direction along the web (see Figs. 8 and 9).  
The section of member AB, shown in Fig. 10, is used to determine the internal moment, ( )M x′ , by applying 
equilibrium, 
 
 ( ) ( ). 0 sin 0pt A C xM M M x C xθ′ ′= → − + =∑  (19) 
 
Solving for the internal moment,  
 
 ( ) ( )sinC xM x M C xθ′ ′= +  (20) 
 
Beam theory10 enables the internal moment within the web to be related to the second derivative of the z’-direction 
deformation ( w′ ) of the web as, 
 
 

 
Fig. 7.  Free body diagram of a section of member AC (crown). 
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Fig. 8.  Free body diagram of dismembered member BAC (crown and web). 

 
 

 
Fig. 9.  Rotated free body diagram of member AB (web) 

 
 

 
Fig. 10.  Free body diagram of a section of member AB. 

 
 
 

 
( ) ( ) ( )

2

2

1 sinC x
w w w w

d w x M x
M C x

dx E I E I
θ

′ ′ ′
′= = +⎡ ⎤⎣ ⎦′

 (21) 

 
where wE  is the effective plane strain Young’s modulus of the web in the x’-direction, and wI  is the area moment 

of inertia of the web face normal to the x’-direction.  Integrating this expression provides the first derivative of w′ , 
which is equivalent to the rotation, 
 

 
( ) ( ) 2

1
1 1 sin

2C x
w w

dw x
M x C x C

dx E I
θ

′ ′ ⎡ ⎤′ ′= + +⎢ ⎥′ ⎣ ⎦
 (22) 
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where 1C  is a constant of integration, which is determined by imposing continuity of rotations at point A.  Noting 
that a positive internal moment in the web will result in a positive (clockwise) rotation, 
 

 
( )

1

0
A

dw x
C

dx
θ

′ ′ =
= =

′
 (23) 

 
Equating Eqs. (23) and (16), 
 

 1
C cr

cr cr

M LC
E I

=  (24) 

 
Integrating Eq. (22) while employing Eq. (24) gives, 
 

 ( ) ( )2 3
2

sin
2 6

xC C cr

w w w w cr cr

CM M Lw x x x x C
E I E I E I

θ
′ ′ ′ ′ ′= + + +  (25) 

 
where 2C  is a constant of integration, which is found in terms of the web z’-direction deformation at point A, Aw′ , 
 
 ( ) 20 Aw x w C′ ′ ′= = =  (26) 
 

Similarly, the axial deformation of the web is written as, 
 

 ( ) ( )cosx
A

w w

C
u x x u

E A
θ

′ ′ ′ ′= +  (27) 

 
where Au′  is the web x’-direction deformation at point A.  The rotation equations relating the web primed coordinate 
system deformation and the unprimed coordinate system deformations are given by, 
 

 
( ) ( )

( ) ( )
cos sin

sin cos

u u w

w u w

θ θ

θ θ

′ = − +

′ = +
 (28) 

 
Therefore, from equations (25) – (28), we have, 
 

 ( ) ( ) ( ) ( )2 3sin
sin cos

2 6
xC C cr

A A
w w w w cr cr

CM M Lw x x x x u w
E I E I E I

θ
θ θ′ ′ ′ ′ ′= + + + +  (29) 

 

 ( ) ( ) ( ) ( )cos
cos sinx

A A
w w

C
u x x u w

E A
θ

θ θ′ ′ ′= − +  (30) 

 
Inverting Eq. (28) yields, 

 
( ) ( )

( ) ( )
cos sin

sin cos

u u w

w u w

θ θ

θ θ

′ ′= − +

′ ′= +
 (31) 

 
which enables the x-direction deformation of the web at point B to be written as, 
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
2 2

2
3 2

cos sin cos sin

cos sin
cos sin cos

2

sin sin
sin cos sin

6

B B B w w

x C
w A A w

w w w w

x C cr
w w A A

w w cr cr

u u w u x L w x L

C M
L u w L

E A E I

C M L
L L u w

E I E I

θ θ θ θ

θ θ
θ θ θ

θ θ
θ θ θ

′ ′ ′ ′ ′ ′= − + = − = + =

= − + − + +

+ + +

 (32) 

 
Recognizing that ( ) ( )2 2sin cos 1θ θ+ =  and substituting for Au  in Eq. (32) using Eq. (18) gives,  
 

      

( ) ( ) ( ) ( )2 2
2 3cos sin sin sin

2 6
x C x C cr x cr

B w w w w
w w w w w w cr cr cr cr

C M C M L C Lu L L L L
E A E I E I E I E A

θ θ θ θ
= − + + + −  (33) 

 
Equating Eq. (33) with the expression for Bu  determined from member BD, Eq. (15), 

   
( ) ( ) ( ) ( )2 2

2 3cos sin sin sin
2 6

x C x C cr x cr x
w w w w cs

w w w w w w cr cr cr cr cs cs

C M C M L C L C FL L L L L
E A E I E I E I E A E A

θ θ θ θ −
− + + + − =  (34) 

 
Noting that the internal moment within the web will cause a positive (clockwise) rotation at point B, equations (22) 
and (24) can be used to write the web rotation at point B as, 
 

 
( ) ( ) 2sin

2
w x wC w C cr

B
w w w w cr cr

dw x L C LM L M L
dx E I E I E I

θ
θ

′ ′ =
= = + +

′
 (35) 

 
Equating Eq. (35) with the expression for Bθ  determined from member BD, Eq. (14), gives, 
 

 
( ) 2 3sin

2 6
x wC w C cr D cs cs

w w w w cr cr cs cs cs cs

C LM L M L M L P L
E I E I E I E I E I

θ
+ + = +  (36) 

 
Equations (4), (36), and (34) now form three algebraic equations for the three unknown quantities, ,x CC M , and 

DM .  Reiterating these equations, we have: 
 
Equilibrium 

 
2

0
2 2 8D C x cs cs
S S SM M hC V L P L M

⎛ ⎞⎛ ⎞+ + + − + − − =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (37) 

 
Rotation Continuity at Point B 
 

 
( ) 2 3sin

2 6
x wC w C cr D cs cs

w w w w cr cr cs cs cs cs

C LM L M L M L P L
E I E I E I E I E I

θ
+ + = +  (38) 

 
x-Displacement Continuity at Point B 
 

   
( ) ( ) ( ) ( )2 2

2 3cos sin sin sin
2 6

x C x C cr x cr x
w w w w cs

w w w w w w cr cr cr cr cs cs

C M C M L C L C FL L L L L
E A E I E I E I E A E A

θ θ θ θ −
− + + + − =  (39) 
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To solve these three equations, we rewrite Eq. (39) as, 

 

   
( ) ( ) ( ) ( )

11 2

2 3 2 2cos sin sin sin
6 2

w w w w crcr cs cs
x C

w w w w cr cr cs cs w w cr cr cs cs

BK K

L L L L LL L FLC M
E A E I E A E A E I E I E A

θ θ θ θ⎡ ⎤ ⎡ ⎤ −
− + − − + + =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

(40) 

 
and identify the terms, 
 

 
( ) ( )2 3 2

1

cos sin
6

w w cr cs

w w w w cr cr cs cs

L L L LK
E A E I E A E A

θ θ
= − + − −  (41) 

 

 
( ) ( )2

2

sin sin
2
w w cr

w w cr cr

L L L
K

E I E I
θ θ

= +  (42) 

 

 1
cs

cs cs

FLB
E A
−

=  (43) 

 
Thus, from Eq. (40), we have, 
 

 1 1

2 2
C x

B KM C
K K

= −  (44) 

Similarly, Eq. (38) can be written as,  
 

 
( )

23 54

2 3sin
2 6
ww cr cs cs

C x D
w w cr cr w w cs cs cs cs

BK KK

LL L L P LM C M
E I E I E I E I E I

θ⎡ ⎤⎡ ⎤ ⎡ ⎤
+ + = +⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
 (45) 

 
with the following terms identified, 
 

 3
w cr

w w cr cr

L LK
E I E I

= +  (46) 

 

 
( )2

4

sin
2
w

w w

L
K

E I
θ

=  (47) 

 

 5
cs

cs cs

LK
E I

=  (48) 

 

 
3

2 6
cs

cs cs

P LB
E I

=  (49) 

 
Thus, from Eq. (45) combined with Eq. (44) we have, 
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 4 1 3 1 3 2

5 2 5 2 5 5
D x

K K K B K BM C
K K K K K K

⎡ ⎤
= − + −⎢ ⎥

⎣ ⎦
 (50) 

 
Substituting Eqs. (50) and (44) into the equilibrium equation (37) gives, 
 

 
2

1 3 1 34 2 1 1

5 2 5 2 5 5 2 2

0
2 2 8x x x cs cs

K K B KK B B K S S SC C hC V L P L M
K K K K K K K K

⎡ ⎤ ⎛ ⎞⎛ ⎞− + − + − + + − + − − =⎜ ⎟⎢ ⎥ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

 (51) 

 
which can be solved for xC  in terms of known quantities, 
 

 

2
31 2

2 5 5

1 34 1

5 2 5 2

1
8 2 2cs cs

x

KB BS S SM P L V L
K K K

C K KK K h
K K K K

⎛ ⎞⎛ ⎞ ⎛ ⎞+ − + − − + +⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠=

− − +
 (52) 

 
The remaining unknowns, CM  and DM , can then be determined from Eqs. (44) and (50). 

The forces and moments in each component are given in terms of the three unknowns as follows, 
 
 cs xF F C= −  (53) 

 ˆcsV Px=  (54) 

 
2ˆ

2cs D
PxM M= +  (55) 

 cr xF C=  (56) 

 0crV =  (57) 

 cr CM M=  (58) 

 ( )cosw xF C θ=  (59) 

 ( )sinw xV C θ=  (60) 

 ( )sinw C xM M C xθ ′= +  (61) 
 
where iF  denotes an axial force and iV  denotes a shear force.  It is noted that the crown has constant axial force 
and moment and zero shear force, the web has constant axial and shear force and a linear moment, and the closed 
span has constant axial force, linear shear force, and quadratic moment. 

It should be noted that the areas and moments of inertia of each component are linearly dependent on the 
out-of-plane dimension of the hat (i.e., the dimension in the y-direction in Fig. 3).  However, examining Eqs. (37) – 
(39), it is clear that this dimension drops out the governing equations.  Thus, it can be concluded that if the applied 
moment, M, applied shear force, V, and applied axial force, F, are given as force and moment resultants rather than a 
moment and forces, and the distributed force due to pressure is given as a true pressure rather than a force per unit 
length, the force and moment solutions in Eqs. (53) – (61) will be resultants as well. 
 
B. Symmetry Boundary Condition between Corrugations 

Next a symmetry boundary condition is considered at the midpoint between the panel corrugations, point H in 
Fig. 11.  The corresponding free body diagram is identical to that shown in Fig. 4.  In this case, the normal force and 
moment at point H are unknown reactions, while the shear force at point H is a known applied load.  The primary
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Fig. 11.  Analysis geometry for a hat stiffened panel – symmetry at point H. 

 
 

distinction from the derivation in the previous section is that the deformation of the open span and face-sheet flange 
combination must now be considered in order to determine the unknown reactions at point H. 

A free body diagram of a section of member HGB is shown in Fig. 12, where j takes on the value of “os” or 
“com” depending on whether the section cut is taken within the open span or flange/facesheet combination.  A new 
x  coordinate direction has been introduced.  Applying equilibrium,  
 
 0z jF V V P x= → = −∑  (62) 
 

 
2

. 0
2pt H j j
xM M P M V x→ + − + =∑  (63) 

 
Substituting Eq. (62) into Eq. (63) gives, 
 

 
2

2j
xM M P V x= + −  (64) 

 
Once again utilizing beam theory12, the second derivative of the z-direction deformation within the open span can be 
written as, 
 
 

 
Fig. 12.  Free body diagram of a section of member HGB. 
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( ) ( )2 2

2

1
2

os os

os os os os

d w x M x xM P V x
dx E I E I

⎡ ⎤
= = + −⎢ ⎥

⎣ ⎦
 (65) 

 
Integrating Eq. (65) and imposing the zero rotation boundary condition at point H ( 0x = ) gives, 
 

 
( ) 3 21

6 2
os

os os

dw x x xMx P V
dx E I

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
 (66) 

 
which allows the rotation at point G (measured as positive in the clock-wise direction) to be written as, 
 

 
( ) 3 2

6 2
os os os os os

G
os os os os os os

dw x L ML PL VL
dx E I E I E I

θ
=

= − = + −  (67) 

 
Similarly, applying beam theory12 to the flange/facesheet combination gives, 
 

 
( ) ( )2 2

2

1
2

com com

com com com com

d w x M x xM P V x
dx E I E I

⎡ ⎤
= = + −⎢ ⎥

⎣ ⎦
 (68) 

 
Integrating Eq. (68), 
 

 
( ) 3 2

6 2
com

com com com com com com

dw x Mx Px V x C
dx E I E I E I

= + − +  (69) 

 
where C  is a constant of integration which can be determined by applying Eq. (69) to determine the rotation at 
point G (measured as positive in the clock-wise direction), 
 

 
( ) 3 2

6 2
com os os os os

G
com com com com com com

dw x L ML PL VL C
dx E I E I E I

θ
=

= − = + − +  (70) 

 
and equating Eqs. (70) and (67), 
 

 
3 2 3 2

6 2 6 2
os os os os os os

os os os os os os com com com com com com

ML PL VL ML PL VLC
E I E I E I E I E I E I

= + − − − +  (71) 

 
The rotation at point B (measured as positive in the clock-wise direction) can then be written as, 
 

 
( ) ( ) ( ) ( )3 2

6 2
com os com os com os com os com

B
com com com com com com

dw x L L M L L P L L V L L
C

dx E I E I E I
θ

= + + + +
= − = + − +  (72) 

 
Substituting Eq. (71) into Eq. (72), 
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( ) ( )

6 3

3 23 23 2

6 2
os com os os com osos com os os

B
os os com com com com os os com com os os

K B

L L L L L LL L L VLP VM
E I E I E I E I E I E I

θ
⎡ ⎤ ⎡ ⎤+ − + −⎡ ⎤

= − − + − − + +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (73) 
 
with the following terms identified, 
 

 6
os com

os os com com

L LK
E I E I

= − −  (74) 

 

 
( ) ( )3 23 23 2

3 6 2
os com os os com osos os

com com os os com com os os

L L L L L LL VLP VB
E I E I E I E I

⎡ ⎤ ⎡ ⎤+ − + −
= − − + +⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (75) 

 
Equation (73) can then be written as, 
 
 6 3B MK Bθ = +  (76) 
 
while Eq. (14) can be written as, 
 
 5 2B DM K Bθ = +  (77) 
 
where Eqs. (48) and (49) have been used.  Equating Eqs. (76) and (77) gives, 
 

 5 32

6 6 6
D

K BBM M
K K K

= + −  (78) 

 
Substituting Eq. (78) into Eq. (37) provides the replacement for the equilibrium equation in terms of the three 
unknowns, ,x CC M , and DM , 
 
Equilibrium 

 
2

5 32

6 6 6

1 0
2 2 8D C x cs cs

K BBS S SM M hC V L P L
K K K

⎛ ⎞ ⎛ ⎞⎛ ⎞− + + + − + − − + =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 (79) 

 
Noting from Fig. 4 that the axial force in member HGB is constant and equal to F, the axial displacement at point 

G can be related to that at point B as, 
 

 com
G B

com com

Lu u F
E A

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 (80) 

 
while the axial displacement at point H can be related to that at point G as,  
 

 os
H G

os os

Lu u F
E A

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 (81) 
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Substituting the expression for uB obtained from the closed span, Eq. (15), into Eq. (80) and the result into Eq. (81) 
yields, 
 

 0cs cs com os
H x

cs cs cs cs com com os os

L L L Lu C F F F
E A E A E A E A

= − − − =  (82) 

 
where the zero axial displacement boundary condition at point H (see Fig. 11) has been imposed.  Solving Eq. (82) 
for F yields, 
 

 

7

cs

cs cs
x

cs com os

cs cs com com os os

K

L
E AF C L L L

E A E A E A

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟+ +⎜ ⎟
⎝ ⎠

 (83) 

 
or 
 7xF C K=  (84) 
 
with 

 7

cs

cs cs

cs com os

cs cs com com os os

L
E AK L L L

E A E A E A

=
+ +

 (85) 

 
Substituting Eq. (84) into Eq. (39) provides the replacement for Eq. (39), 
 
x-Displacement Continuity at Point B 
 

 

( ) ( ) ( ) ( )2 2
2 3

7

cos sin sin sin
2 6

x C x C cr x cr
w w w w

w w w w w w cr cr cr cr

x x
cs cs

cs cs cs cs

C M C M L C LL L L L
E A E I E I E I E A
C C KL L

E A E A

θ θ θ θ
− + + + −

= −
 (86) 

 
The rotation continuity equation (38) remains valid. 

To solve Eqs. (79), (86), and (38) for the three unknowns, ,x CC M , and DM , Eq. (86) is rewritten as, 
 

 7
1 2

x cs
x C

cs cs

C K LC K M K
E A

−
+ =  (87) 

 
where Eqs. (41) and (42) have been employed.  Upon rearrangement, Eq. (87) becomes, 
 

 
1

1

7
1 2 0cs

x C
Bcs cs

K

K LC K M K
E A ′

′

⎛ ⎞
+ + =⎜ ⎟

⎝ ⎠
 (88) 

 
and replaces Eq. (44) when written in the form, 
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 1 1

2 2
C x

B KM C
K K
′ ′

= −  (89) 

 
with, 

 7
1 1

cs

cs cs

K LK K
E A

′ = +  (90) 

 
and,  
 1 0B′ =  (91) 
 
Substituting Eq. (89) into Eq. (45), 
 

 1 3 1 34 2

5 2 5 2 5 5
D x

K K B KK BM C
K K K K K K

⎡ ⎤′ ′
= − + −⎢ ⎥

⎣ ⎦
 (92) 

 
Substituting Eq. (92) into Eq. (78), the unknown reaction moment at point H can be written as a function of Cx,  
 

 1 3 1 3 34

6 2 6 2 6 6
x

K K B K BKM C
K K K K K K
⎡ ⎤′ ′

= − + −⎢ ⎥
⎣ ⎦

 (93) 

 
Substituting Eqs. (92), and (89) into the equilibrium equation (79), 
 

 

2
1 3 1 34 2 1 1

5 2 5 2 5 5 2 2

1 3 1 3 34

6 2 6 2 6 6

2 2 8

0

x x x cs cs

x

K K B KK B B K S S SC C hC V L P L
K K K K K K K K

K K B K BKC
K K K K K K

⎡ ⎤′ ′ ′ ′ ⎛ ⎞⎛ ⎞− + − + − + + − + −⎜ ⎟⎢ ⎥ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤′ ′
− − − + =⎢ ⎥

⎣ ⎦

 (94) 

  
This equation replaces Eq. (51) and can be solved for Cx, 
 

 

2
3 3 31 2

2 5 6 5 6

1 3 1 34 1 4

5 2 5 2 6 2 6

1
8 2 2cs cs

x

K K BB BS S SP L V L
K K K K K

C K K K KK K Kh
K K K K K K K

⎛ ⎞′⎛ ⎞ ⎛ ⎞− + − − + + + −⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠= ′ ′′

− − + − +
 (95) 

 
Equation (95) replaces Eq. (52) for the present case where symmetry is specified at point H (see Fig. 11) and the 
reaction normal force, F, and moment at point H, M, are unknown.  Once xC  is determined, F can be calculated 
from Eq. (84) and M can be calculated from Eq. (93). 
 The forces and moments in the open span and facesheet-flange combination are given by, 
 
 com osF F F= =  (96) 

 com osV V V Px= = −  (97) 

 
2

2com os
PxM M M Vx= = − +  (98) 
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It should be noted that Eqs. (96) – (98) are valid for the applied force and moment boundary conditions described in 
section III.A. 
 

IV. Results and Discussion 
 

Five verification examples are presented below comparing the current solution within HyperSizer to NASTRAN 
finite element stress results.  The first four cases consider hat stiffened and two sheet corrugated panels, with 
isotropic adherends, subjected to tensile and moment loads at point H.  A final example then considers a composite 
hat stiffened panel subjected to internal pressure with the symmetry condition applied at point H. 

 
A. Example 1: Hat Panel Loaded with Tensile Force 

The first example problem considers a hat stiffened panel subjected to a tensile force resultant of 1 lb/in 
transverse to the direction of the hat stiffeners.  It is assumed that the hat stiffeners are bonded to the face sheet with 
an epoxy adhesive.  The problem dimensions and isotropic material properties are summarized in Fig. 13.  Fig. 14 
shows a plane strain NASTRAN finite element model of the problem, illustrating the deformed shape.  The resulting 
shear stress, τyz, within the facesheet to flange joint region is shown in Fig. 15a.  Fig. 15b compares the shear stress 
plotted along the middle of the adhesive (dashed line in Fig. 15a) in the finite element solution with the HyperSizer 
Joints adhesive shear stress solution.  As shown, the agreement is excellent. 

 
 
 

 
 

Variable Designs 

 Value 

Unit Weight (lb / ft^2) 3.493 

Top Face - Thickness (in) 0.1 

Core Web - Thickness (in) 0.09 

Bottom Face - Thickness (in) 0 

Panel - Height (in) 1.747 

Corrugation - Spacing (in) 4 

Bottom Crown - Width (in) 0.8 

Core Web - Angle (degrees) 82.24 

Top Flange - Width, hat only (in) 2.079 

Top Clear Span - Free Width (in) 0.6969 

Top Flange - Thickness (in) 0.09 

Bottom Crown - Thickness (in) 0.09 
 
Facesheet and Hat: Aluminum  Adhesive: Epoxy 
E = 10 Msi    E = .445 Msi 
G = 3.846 Msi    G = .165 Msi 
ν = 0.3     ν = 0.35 
     thickness = 0.009” 
 

Fig. 13.  Example 1 and 2 hat stiffened panel parameters. 

Conceptual Hat Stiffened Panel Geometry

To-Scale Hat Stiffened Panel
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Fig. 14.  NASTRAN finite element model deformed shape for example 1 hat stiffened panel. 

 
 

 

 
Fig. 15. Shear stress, τyz, (a) in NASTRAN finite element model (b) plotted along adhesive (dashed line in a), 

comparing finite element model with HyperSizer Joints. 
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Fig. 16a shows the peel stress field in the finite element model solution, while Fig. 16b compares the peel stress 
along the adhesive (dashed line in Fig. 16a) with the HyperSizer Joints solution.  The agreement is excellent near the 
free edge of the hat flange, while in the web region, where the peel stress is lower, there is some discrepancy.  This 
is expected as the HyperSizer Joints model considers only a bonded doubler (see Fig. 1) and accounts for the 
presence of the stiffener web only as an effective boundary load.  As the stiffener becomes thicker, and less shell-
like, one would expect such effective boundary loads to be less representative of a continuum finite element 
solution. 
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Fig. 16.  Peel stress, σzz, (a) in NASTRAN finite element model (b) plotted along adhesive (dashed line in a), 

comparing finite element model with HyperSizer Joints. 
 
B. Example 2: Hat Panel Loaded with Applied Moment 

The second example problem considers the same hat stiffened panel, but now it is subjected to a moment 
resultant of -1 in-lb/in.  As before, the problem dimensions and material properties are summarized in Fig. 13.  Fig. 
17 shows a plane strain NASTRAN finite element model of the problem, illustrating the deformed shape.  The 
resulting shear stress, τyz, within the facesheet to flange joint region is shown in Fig. 18a.  Fig. 18b compares the 
shear stress plotted along the middle of the adhesive in the finite element solution (as indicated by the dashed line) 
with the HyperSizer Joints adhesive shear stress solution.  As shown, the agreement is excellent. 
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Fig. 17.  NASTRAN finite element model deformed shape for example 2 hat stiffened panel. 

 

 

 
Fig. 18.  Shear stress, τyz, (a) in NASTRAN finite element model (b) plotted along adhesive (dashed line in a), 

comparing finite element model with HyperSizer Joints. 
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Fig. 19a shows the peel stress field in the finite element model solution, while Fig. 19b compares the peel stress 
along the adhesive with the HyperSizer Joints solution.  The agreement is excellent near the free edge of the hat 
flange, while, once again, in the web region, where the peel stress is lower, there is agreement is not as good. 
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Fig. 19. Peel stress, σzz, (a) in NASTRAN finite element model (b) plotted along adhesive (dashed line in a), 

comparing finite element model with HyperSizer Joints. 
 
 
C. Example 3: Two Sheet Corrugated Panel Loaded with Tensile Force 

The third example problem considers a two sheet corrugated stiffened panel subjected to a force resultant of 1 
lb/in.  As shown in Fig. 20, a two sheet corrugated panel is similar to a hat stiffened panel, with the difference being 
the fact the two sheet has continuous flanges.  The problem dimensions and material properties are summarized in 
Fig. 20.  Fig. 21 shows a plane strain NASTRAN finite element model of the problem, illustrating the deformed 
shape.  The resulting shear stress, τyz, within the facesheet to flange joint region is shown in Fig. 22a.  Fig. 22b 
compares the shear stress plotted along the middle of the adhesive in the finite element solution with the HyperSizer 
Joints adhesive shear stress solution.  As shown, the agreement is excellent. 

Fig. 23a shows the peel stress field in the finite element model solution, while Fig. 23b compares the peel stress 
along the adhesive with the HyperSizer Joints solution.  As shown, there is a significant discrepancy between the 
HyperSizer Joints solution and the finite element model in this case.  While both solutions show a trough and a peak, 
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the location of these features is not consistent.  Again, the approximate way in which the presence of the web is 
accounted for in the HyperSizer Joints solution (as an effective boundary load) is the likely cause of this 
discrepancy. 
 
 

 
Variable Designs 

 Value

Unit Weight (lb / ft^2) 3.749

Top Face - Thickness (in) 0.1 

Core Web - Thickness (in) 0.09 

Bottom Face - Thickness (in) 0 

Panel - Height (in) 1.747

Corrugation - Spacing (in) 4 

Bottom Crown - Width (in) 0.8 

Core Web - Angle (degrees) 83.68

Top Flange - Width, hat only (in) 2.855

Top Clear Span - Free Width (in) 0 

Top Flange - Thickness (in) 0.09 

Bottom Crown - Thickness (in) 0.09 
 
 
Facesheet and Hat: Aluminum  Adhesive: Epoxy 
E = 10 Msi     E = .445 Msi 
G = 3.846 Msi     G = .165 Msi 
ν = 0.3      ν = 0.35 
      thickness = 0.009” 
 

Fig. 20.  Example 3 and 4 two sheet corrugated stiffened panel parameters. 
 

 
Fig. 21.  NASTRAN finite element model deformed shape for example 3 two sheet corrugated stiffened panel. 

 

Conceptual Two-Sheet Stiffened Geometry

To-Scale Two-Sheet Stiffened Panel
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Fig. 22. Shear stress, τyz, (a) in NASTRAN finite element model (b) plotted along adhesive (dashed line in a), 

comparing finite element model with HyperSizer Joints. 
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Fig. 23. Peel stress, σzz, (a) in NASTRAN finite element model (b) plotted along adhesive (dashed line in a), 

comparing finite element model with HyperSizer Joints. 

 
D. Example 4: Two Sheet Corrugated Panel Loaded with Applied Moment 

The fourth example problem considers the same two sheet corrugated stiffened panel, but now it is subjected to a 
moment resultant of -1 in-lb/in.  As before, the problem dimensions and material properties are summarized in Fig. 
20.  Fig. 24 shows a plane strain NASTRAN finite element model of the problem, illustrating the deformed shape.  
The resulting shear stress, τyz, within the facesheet to flange joint region is shown in Fig. 25a.  Fig. 25b compares the 
shear stress plotted along the middle of the adhesive (dashed line in Fig. 25a) in the finite element solution with the 
HyperSizer Joints adhesive shear stress solution.  As shown, the agreement is excellent. 

Fig. 27a shows the peel stress field in the finite element model solution, while Fig. 27b compares the peel stress 
along the adhesive with the HyperSizer Joints solution.  The agreement, while better than that exhibited by the two 
sheet panel subjected to the applied force resultant, still shows some discrepancy with the finite element results. 
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Fig. 24.  NASTRAN finite element model deformed shape for example 3 two sheet corrugated stiffened panel. 
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Fig. 25. Shear stress, τyz, (a) in NASTRAN finite element model (b) plotted along adhesive (dashed line in a), 

comparing finite element model with HyperSizer Joints. 
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Fig. 26. Peel stress, σzz, (a) in NASTRAN finite element model (b) plotted along adhesive (dashed line in a), 

comparing finite element model with HyperSizer Joints 
 
 
E. Example 5: Composite Hat Stiffened Panel Loaded with Pressure 

The final example problem considers a composite hat stiffened panel subjected to a uniform pressure load of 10 
psi.  The problem dimensions and material properties are summarized in Fig. 27.  The chosen composite is a typical 
graphite/epoxy fabric with all zero plies.  This configuration was chosen for the example problem so that the same 
problem could be solved in a 2-D plane strain FEA. A composite with off-axis plies would require a 3-D finite 
element model for comparison, which was not constructed for this study. Fig. 28 shows the plane strain NASTRAN 
finite element solution to this problem, illustrating the deformed shape.  For comparison, Fig. 29 shows the 
deformed shape resulting from the current closed form method.  The results for min and max deflection within the 
facesheet are within about 5% of the FEA result.  A comparison between the FEA and the current method for the 
adhesive shear stress, τyz, is shown in Fig. 30.  Fig. 31 shows a similar comparison of the peel stress in the adhesive.  
In both cases, the current method shows excellent agreement with the finite element model, even in the vicinity of 
the web.  This better correlation of the peel stress in the web region (compared to the previous results) may be due to 
the thinner stiffener used in this example.  This thinner geometry tends to make the hat stiffener act more like a 
shell, which in turn makes the effective load boundary conditions used to account for the web more representative. 
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Variable Designs 

 Value

Unit Weight (lb / ft^2) 1.174

Top Face - Thickness (in) 0.098

Core Web - Thickness (in) 0.028

Bottom Face - Thickness (in) 0 

Panel - Height (in) 1.747

Corrugation - Spacing (in) 4 

Bottom Crown - Width (in) 0.8 

Core Web - Angle (degrees) 82.24

Top Flange - Width, hat only (in) 2.079

Top Clear Span - Free Width (in) 0 

Top Flange - Thickness (in) 0.028

Bottom Crown - Thickness (in) 0.028
 
 
 
 
Facesheet and Hat: Graphite Epoxy Fabric  Adhesive: Epoxy 
E1 = 11 Msi; E2 = 10.1 Ms    E = .445 Msi 
G12 = G13 = G23 = 0.76 Msi    G = .165 Msi 
ν12 = 0.0363      ν = 0.35 
Ply Thickness = 0.014"    thickness = 0.009” 
 
Facesheet Layup 
7 Plies; [07] – Total Thickness = 0.098" 
 
Hat Flange, Web, Crown Layup 
2 Plies; [02] – Total Thickness = 0.028" 
 
Loading 
Pressure = 10 psi 
 

Fig. 27.  Example 5 composite fabric corrugated stiffened panel parameters. 

Conceptual Hat Stiffened Panel Geometry

To-Scale Composite Hat Stiffened Panel 
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Fig. 28. NASTRAN finite element model deformed shape for example 5 composite hat stiffened panel with applied 

pressure.  
 
 
 
 

 
 

Fig. 29. Deformed shape from the current closed form formulation (scale factor different than in Fig. 28). 

Pressure = 10 psi 

Deflection at center of Open Span: 
FEA:   0.00288" 
HyperSizer: 0.00295" 

Deflection at center of Closed Span: 
FEA:   -0.000616" 
HyperSizer: -0.00058" 
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Fig. 30.  Shear stress, τyz, plotted along adhesive, comparing finite element model with HyperSizer Joints. 
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Fig. 31.  Peel stress, σzz, plotted along adhesive, comparing finite element model with HyperSizer Joints. 
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V. Conclusion 
 

A method for the rapid analysis of facesheet to flange bonded joints in composite corrugated panels has been 
developed.  The bonded joint analysis is based on the HyperSizer Joints methodology4-9, which is an analytical 
approach for determining the stress fields arising in the joint adherends and adhesive.  In order to obtain the 
boundary loads specific to a given corrugated panel needed for application within the HyperSizer Joints analysis, a 
beam analogy model has been developed.  This beam analogy model allows for a moment resultant and normal and 
shear force resultants, as well as pressure, to be applied, the magnitudes of which (for instance) can be obtained 
from a global finite element loads model.  Thus, starting on this global scale, the loads can be localized and applied 
to the corrugated panel flange to facesheet bonded joint, and the local ply-level in-plane and interlaminar stress 
fields can be calculated.  Ply-level margins of safety can then be determined based on ply-level failure criteria, and 
the viability of a given corrugated panel design can be evaluated.  This new capability has been incorporated within 
the HyperSizer Structural Sizing Software1, enabling a new level of fidelity in the software’s corrugated panel 
preliminary design capability. 

Results comparing the method to finite element analysis for monolithic and composite hat stiffened and two 
sheet corrugated panels were presented.  It was shown that the method predicts joint adhesive peel stresses that 
match well with the finite element result in most cases.  The predicted joint adhesive shear stresses match very well 
with the finite element results in all cases examined.  The main discrepancy between the method and the finite 
element peel stress results occurred at the point where the web intersects the flange at an angle (see Fig. 3).  This 
angle intersection geometry is accurately captured in the finite element model, while in the joint analysis, an 
effective boundary load is applied at this point and the detailed local stress field induced by the web angle within the 
continuum finite element analysis is not captured.  It is thus expected that the predicted stress fields would be more 
approximate in this region.  In sum, however, the method has been shown to give quite accurate results in an 
efficient closed form suitable for structural optimization problems in which thousands of potential corrugated panel 
configurations must be considered rapidly. 
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