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The focus of this work is to critically evaluate the predictive capabilities of several
advanced micromechanics models, including GMC, HFGMC, ECM, and VAMUCH. The
comparison concentrates primarily on predictions for the effective elastic properties and
local stress fields based on micromechanics approaches for various types of composite sys-
tems. Both exact analytical solutions and finite element simulations will be utilized in
the comparison to assess the accuracy of the different models. It is found that for some
microstructures, most of the compared models provide similar and reliable predictions for
effective properties. For an accurate prediction for local stress distributions, HFGMC and
VAMUCH significantly outperform GMC, which provides only average local fields. A very
challenging X shape microstructure is also proposed in this paper which pushes all the
micromechanics models to their limits. This case clearly discloses the fallacy about mi-
cromechanics that every model “works” as far as effective properties concerned. Such an
assessment can help engineers choose the appropriate micromechanics model for composites
they are dealing with in their applications.

Introduction

As structural applications become more demanding it is becoming increasingly important that the fun-
damental response mechanisms controlling both the microscopic and macroscopic behavior of structural
materials be well understood. Properly quantified in a material model such understanding can be used to
improve structural designs, make more accurate estimates of a given structure’s capabilities, or engineer a
material’s microstructure in order to enhance desirable performance characteristics.

The fundamental response mechanisms in all heterogeneous materials are driven by the localization pro-
cesses induced by the presence of the heterogeneities (the microstructures) that exist in these materials.
Micromechanical theories are particularly well suited to modeling localization processes and how they in-
fluence the micro- and macroscopic material behavior since these theories predict the multiscale material
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response based directly on a knowledge of the behavior of the individual component materials and of the
heterogeneous microstructure.

There are a number of different types of homogenization tools available. The simplest such models,1,2

which are based on strength of materials assumptions, can only be considered to give very rough estimates
for a material’s response characteristics. Mean field theories, such as the Mori-Tanaka theory3,4 can provide
reasonable estimates for a material’s bulk elastic response but typically fail to provide good estimates for the
local responses and the history-dependent responses of the material. In order to correctly predict the local
and bulk response characteristics in the elastic and inelastic domains it is necessary to utilize micromechanical
theories that consider both the average fields within phases as well as the fluctuating fields within the phases.5

A set of relatively simple micromechanical models that have attempted to develop such capabilities are the
so-call “Method of Cells” (MOC)6 and the “Generalized Method of Cells” (GMC).7,8 These approaches are
based on the use of average strain and stress fields within discrete subvolumes of the microstructure. A review
of some of the published work using these models is given in Ref. 9. One shortcoming of the MOC/GMC
models is the lack of coupling between the local shearing and normal responses for composites composed of
phases with at least orthotropic symmetry. This lack of coupling has significant implications for predicting
the history-dependent behavior of such materials. In order to overcome this lack of coupling in the local fields
it is necessary to utilize theories with more accurate representations of the local fields. There are a number
of such theories currently available. Two very different approaches that have been developed in an attempt
to directly address the lack of coupling in the MOC/GMC set of models are the so-called “High Fidelity
Generalized Method of Cells” (HFGMC) model10 and the so-called “Elasticity-based Cell Model”.5,11,12

Obviously, various other models that exhibit (potentially) accurate representations of the microfields in
the composite exist which have no connection to the original MOC/GMC methodologies. Examples of
such theories are Green’s function based analyses13 and asymptotic homogenization approaches.14 A recently
developed variant of the asymptotic homogenization approach is the Variational Asymptotic Method for Unit
Cell Homogenization (VAMUCH).15–17 In contrast to conventional asymptotic methods, VAMUCH carries
out an asymptotic analysis of the variational statement, synthesizing the merits of both variational methods
and asymptotic methods. Finally, there are a number of purely numerical approaches, such as finite element
analyses,18,19 and particle-in-cell methods,20 that have been used to model the micromechanical response of
heterogeneous materials.

Obviously, significant effort has been expended to develop a number of approaches that can be used
to consider the micromechanical responses of composite systems. However, there has been relatively little
work done that compares the predictive capabilities of different approaches. One such study, carried out by
Lissenden and Herakovich,21 considered the ability of various simplified micromechanical theories to predict
the bulk elastic properties of continuous fiber composites. However, in today’s environment of advanced
applications it is no longer sufficient to consider only the predictions for the bulk characteristics. It is now
necessary to consider the predictive capabilities for the local fields within the material system.

The focus of the current work is the comparison of the predictive capabilities of several advanced mi-
cromechanical theories; the GMC theory, the HFGMC theory, the ECM theory, and VAMUCH, with each
other as well as with established analytical solutions and finite element predictions. The work will consider
both the local and global responses. Since accurate predictions for the elastic fields within the composite are
a necessary prerequisite for accurately predicting the history-dependent behavior of heterogeneous materials
the current comparisons focus on the elastic predictions.

The Generalized Method of Cells (GMC)

The starting point for the GMC theory is the discretization of the periodic material microstructure into
rectangular (for the two-dimensional (2D) theory) or rectilinear parallelepiped (for the three-dimensional
(3D) theory) subregions; see Fig. 1. Each of these subregions is termed a subcell. The displacement field
within each subcell is modeled using the representation (for 3D microstructures)

u
(α,β,γ)
i = Ψ(α,β,γ)

i x1 + Γ(α,β,γ)
i x2 + Ω(α,β,γ)

i x3 (1)

This displacement field representation results in uniform strains within each subcell (although the strains in
different subcells are typically different).

Satisfaction of the displacement continuity conditions between subcells as well as between repeating
material volumes, either unit cells (UC) or representative volume elements (RVEs), gives the following set

2 of 17

American Institute of Aeronautics and Astronautics



 

Figure 1. The discretized repeating volume for a particulate composite used by the original GMC model, the
HFGMC theory, and the ECM.

of governing equations
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where εij are the applied average strain field and where

ε
(α,β,γ)
23 =

(
Ω(α,β,γ)

2 + Γ(α,β,γ)
3

)
/2

ε
(α,β,γ)
13 =

(
Ω(α,β,γ)

1 + Ψ(α,β,γ)
3

)
/2

ε
(α,β,γ)
12 =

(
Ψ(α,β,γ)

2 + Γ(α,β,γ)
1

)
/2 (3)

Satisfaction of the traction continuity conditions in an average sense between subcells as well as between
repeating material volumes gives the following governing relations

σ
(α,β,γ)
11 = σ

(α+1,β,γ)
11 for α = 1, .., Nα − 1, β = 1, .., Nβ , γ = 1, .., Nγ

σ
(α,β,γ)
22 = σ

(α,β+1,γ)
22 for α = 1, .., Nα, β = 1, .., Nβ − 1, γ = 1, .., Nγ

σ
(α,β,γ)
33 = σ

(α,β,γ+1)
33 for α = 1, .., Nα, β = 1, .., Nβ , γ = 1, .., Nγ − 1

σ
(α,β,γ)
23 = σ

(α,β,γ+1)
23 for α = 1, .., Nα, β = 1, .., Nβ − 1, γ = 1, .., Nγ

σ
(α,β,γ)
23 = σ

(α,β+1,γ)
23 for α = 1, .., Nα, β = Nβ , γ = 1, ..., Nγ − 1

σ
(α,β,γ)
13 = σ

(α,β,γ+1)
13 for α = 1, .., Nα − 1, β = 1, .., Nβ , γ = 1, .., Nγ

σ
(α,β,γ)
13 = σ

(α+1,β,γ)
13 for α = Nα − 1, β = 1, .., Nβ , γ = 1, ..., Nγ − 1

σ
(α,β,γ)
12 = σ

(α,β+1,γ)
12 for α = 1, .., Nα − 1, β = 1, .., Nβ , γ = 1, .., Nγ

σ
(α,β,γ)
12 = σ

(α+1,β,γ)
12 for α = Nα, β = 1, ..., Nβ − 1, γ = 1, .., Nγ (4)

The above system of governing equations can be cast in the following matrix form

Ãεs − D̃
(
εI
s + εT

s

)
= Kε (5)

Solving Eqn. (5) for the subcell strains εs yields

εs = Aε + D
(
εI
s + εT

s

)
(6)

where A and D are the mechanical and eigenstrain concentration tensors, respectively.
The bulk constitutive relations for the composite

σ = B∗ (
ε− εI − εT

)
(7)

are obtained by substituting Eqn. (6) into the average stress theorem. Explicit expressions for the terms B∗,
εI , and εT are give in Ref. 8.

There are a couple of characteristics in the GMC theory that should be kept in mind. First, as mentioned
previously there is no geometrically induced coupling between the local normal and shearing effects. Addi-
tionally, there is no geometrically induced coupling between the local shearing effects. Since the stresses in
each subcell are spatially uniform within the subcell every subcell along a given row of subcells (in any of
the directions) experiences the same stress along that direction. Furthermore, the behavior along the row is
typically dominated by the most compliant material in the row. These characteristics of the GMC approach
were utilized in Refs. 22 and 23 to reformulate the 2D and 3D versions of GMC, respectively, in order to
maximize the computational efficiency of the method (i.e., minimize the number of unknown variables). For
full details of the GMC formulation for see Ref. 7 for 2D UCs and Ref. 8 for 3D UCs.

The High-Fidelity Generalized Method of Cells Theory (HFGMC)

The version of HFGMC that is described herein is designated for the prediction of the effective ther-
moinelastic behavior of composites with discontinuous fibers (i.e., short-fiber composites). This three-
dimensional, triply periodic theory has been fully described in Ref. 10 in the case of linear electro-magneto-
thermo-elastic materials. Thus, thermoelastic phases can by obtained as a special case. The inclusion of
inelastic effects in the phases follows the analysis that has been presented in Ref. 24 in the two-dimensional
case of continuous fibers. This micromechanical model is briefly outlined in the following.

4 of 17

American Institute of Aeronautics and Astronautics



This model is based on a homogenization technique for composites with periodic microstructure as shown
in Fig. 1(a) in terms of the global coordinates (x1, x2, x3). The parallelepiped repeating unit cell, Fig. 1(b),
defined with respect to the local coordinates (y1, y2, y3), of such a composite is divided into Nα, Nβ , and
Nγ subcells, in the y1, y2, and y3 directions, respectively. Each subcell is labeled by the indices (α, β, γ)
with α = 1, ..., Nα, β = 1, ..., Nβ , and γ = 1, ..., Nγ , and may contain a distinct homogeneous material.
The dimensions of the subcell are denoted by dα , hβ , and lγ , respectively. A local coordinate system,
(y(α)

1 , y
(β)
2 , y

(γ)
3 ) is introduced in each subcell whose origin is located at the subcell center. The local (subcell)

constitutive equation of the material which, in general, is assumed to be thermoinelastic, is given by

σ(α,β,γ) = C(α,β,γ)
(
ε(α,β,γ) − εI(α,β,γ)

)
− Γ(α,β,γ)∆T (8)

where σ(α,β,γ), ε(α,β,γ), εI(α,β,γ), and Γ(α,β,γ) are the stress, total strain, inelastic strain and thermal stress
tensors, respectively, in subcell (α, β, γ), C(α,β,γ) is the stiffness tensor of the material in the subcell (α, β, γ),
and ∆T denotes the temperature deviation from a reference temperature.

The basic assumption in HFGMC is that the displacement vector u(α,β,γ) in each subcell is expanded
into quadratic form in terms of its local coordinates (y(α)

1 , y
(β)
2 , y

(γ)
3 ) as follows

u(α,β,γ) = εx + W
(α,β,γ)
(000) + y

(α)
1 W

(α,β,γ)
(100) + y

(β)
2 W

(α,β,γ)
(010) + y

(γ)
3 W

(α,β,γ)
(001)

+
1
2

(
3y

(α)2
1 − d2

α

4

)
W

(α,β,γ)
(200) +

1
2

(
3y

(β)2
2 − h2

β

4

)
W

(α,β,γ)
(020) +

1
2

(
3y

(γ)2
3 − l2γ

4

)
W

(α,β,γ)
(002) (9)

where ε is the applied (external) average strain, and the unknown terms W
(α,β,γ)
(kmn) must be determined from

the fulfillment of the equilibrium conditions, the periodic boundary conditions, and the interfacial continuity
conditions of displacements and tractions between subcells. The periodic boundary conditions ensure that
the displacements and tractions at opposite surfaces of the repeating unit cell are identical, see Ref. 10 for
more details. A principal ingredient in this micromechanical analysis is that all these conditions are imposed
in the average (integral) sense.

Note that GMC employs a first order expansion of the displacement vector in the subcell (see Eqn. (1)).
The second order expansion in Eqn. (9) for HFGMC has been previously employed in the analysis of wave
propagation in composite materials,25–27 and in the determination of the response of functionally graded
materials to thermoelastic loading.28

As a result of the imposition of the equilibrium equations in the subcells together with the application
of the interfacial and periodicity conditions, a linear system of algebraic equations is obtained which can be
represented in the following form

KU = f + g (10)

where the matrix K contains information on the geometry and thermomechanical properties of the materials
within the individual subcells (α, β, γ), and the displacement vector U contains the unknown displacement
coefficients W

(α,β,γ)
(kmn) in Eqn. (9), f is a vector containing information on the applied average strains ε and

the imposed temperature deviation ∆T , and g is a vector containing the inelastic effects given in terms
of the integrals of the inelastic strain distributions. These integrals depend implicitly on the elements of
the displacement coefficient vector U , requiring an incremental solution of Eqn. (10) at each point along
the loading path, see Ref. 24 for more details. Eqn. (10) forms a system of 21NαNβNγ algebraic equations.
Computational efficiency issues related to solving these equations within the HFGMC are discussed in Ref. 29.

The solution of Eqn. (10) enables the establishment of the following localization relation which expresses
the average strain ε(α,β,γ) in the subcell (α, β, γ) to the externally applied average ε, which are given in
Ref. 30 as

ε(α,β,γ) = A(α,β,γ)ε + Ath(α,β,γ)∆T + DI(α,β,γ) (11)

where A(α,β,γ) and Ath(α,β,γ) are the mechanical and thermal strain concentration tensors, respectively, of
the subcell (α, β, γ), and DI(α,β,γ) is a vector that involves the current inelastic effects in the subcell.

The final form of the effective constitutive law of the multiphase thermo-inelastic composite, which relates
the average stress σ and strain ε, is established as follows:

σ = C∗ε− (
Γ∗∆T + σI

)
(12)
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In this equation C∗ is the effective stiffness tensor and Γ∗ is the effective thermal stress tensor of the
composite, and σI is the global inelastic stress tensor. All of these global quantities can be expressed in a
closed-form manner in terms of the mechanical and thermal concentration tensors which appear in Eqn. (11)
together with the inelastic term DI(α,β,γ), which are given in Ref. 30 as follows

C∗ =
1

DHL

Nα∑
α=1

Nβ∑

β=1

Nγ∑
γ=1

dαhβlγC(α,β,γ)A(α,β,γ)

Γ∗ = − 1
DHL

Nα∑
α=1

Nβ∑

β=1

Nγ∑
γ=1

dαhβlγ

(
C(α,β,γ)Ath(α,β,γ) − Γ(α,β,γ)

)

σI = − 1
DHL

Nα∑
α=1

Nβ∑

β=1

Nγ∑
γ=1

dαhβlγ

(
C(α,β,γ)DI(α,β,γ) −R

(α,β,γ)
(000)

)
(13)

where R
(α,β,γ)
(000) is an expression that represents the integral of the inelastic strain distributions.

Based on the generalized method of cells family of models, the NASA Glenn Research Center developed
a micromechanics computer code, referred to as MAC/GMC, that has many user-friendly features and
significant flexibility for the analysis of continuous, discontinuous, and woven polymer, ceramic, and metal
matrix composites with phases that can be represented by arbitrary elastic, viscoelastic, and/or viscoplastic
constitutive models. The most recent version of a user guide to this code (version 4) which has been presented
by Bednarcyk and Arnold31 incorporates HFGMC, together with additional material models including smart
materials (electromagnetic and shape memory alloys) and yield surface prediction of metal matrix composites.

The Elasticity-Based Cell Model (ECM)

The Elasticity-Based Cell Model (ECM)5,11,12 starts with the same type of microstructural discretization
as used by the original GMC theory, Fig. 1. The displacement field within each subcell is given in terms of
an infinite series

u
(α1,α2,α3)
i

(
x, y

)
= εijxj + P

(α1,α2,α3)
(o1,o2,o3)

(
y
)
V

(α1,α2,α3)
i(o1,o2,o3)

(14)

where the εij are the components of the bulk strain field, the xj are the macroscopic coordinate components,
P

(α1,α2,α3)
(o1,o2,o3)

(
y
)

= p
(α1)
(o1)

(y1)p
(α2)
(o2)

(y2)p
(α3)
(o3)

(y3) and the p(oi) are orthogonal polynomial terms of order oi in the
yi (the local coordinate) directions in the subcells. The corresponding subcell strain and stress fields are
given by

ε
(α1,α2,α3)
ij = P

(α1,α2,α3)
(0,0,0) εij + P

(α1,α2,α3)
(o1,o2,o3)

µ
(α1,α2,α3)
ij(o1,o2,o3)

σ
(α1,α2,α3)
ij = P

(α1,α2,α3)
(o1,o2,o3)

σ
(α1,α2,α3)
ij(o1,o2,o3)

(15)

The µ
(α1,α2,α3)
ij(o1,o2,o3)

represent the fluctuating strain effects. Summation on repeated order indices, oi, is assumed.
Making use of the orthogonality properties of the expansions functions the equilibrium equations are

satisfied by
σ

(α1,α2,α3)
1j(o′1,o2,o3)

a
(α1)
(o′1,o1)

+ σ
(α1,α2,α3)
2j(o1,o′2,o3)

a
(α2)
(o′2,o2)

+ σ
(α1,α2,α3)
3j(o1,o2,o′3)

a
(α1)
(o′3,o3)

= 0 (16)

which results in pointwise satisfaction of the equilibrium conditions.
Imposing traction continuity in terms of the different expansion orders within the subcell surfaces (both

between subcells within a repeating volume as well as between repeating volumes) gives

σ
(α1,α2,α3)
1i(o1,o2,o3)

p(α1)
o1

(
δ
(α1)
(1)

)
= σ

(α̃1,α2,α3)
1i(o1,o2,o3)

p(α̃1)
o1

(
−δ

(α̃1)
(1)

)

σ
(α1,α2,α3)
2i(o1,o2,o3)

p(α2)
o2

(
δ
(α2)
(2)

)
= σ

(α1,α̃2,α3)
2i(o1,o2,o3)

p(α̃2)
o2

(
−δ

(α̃2)
(2)

)

σ
(α1,α2,α3)
3i(o1,o2,o3)

p(α3)
o3

(
δ
(α3)
(3)

)
= σ

(α1,α2,α̃3)
3i(o1,o2,o3)

p(α̃3)
o3

(
−δ

(α̃3)
(3)

)
(17)
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where δ
(αi)
(i) = dαi

(i)/2. As was the case for the equilibrium conditions the above equations represent pointwise
satisfaction of the interfacial traction continuity constraints.

Following similar procedures to those used to obtain the traction continuity equations, the displacement
continuity conditions at the different interfaces are seen to be satisfied by

p(α1)
o1

(
δ
(α1)
(1)

)
V

(α1,α2,α3)
i(o1,o2,o3)

= p(α̃1)
o1

(
−δ

(α̃1)
(1)

)
V

(α̃1,α2,α3)
i(o1,o2,o3)

p(α2)
o2

(
δ
(α2)
(2)

)
V

(α1,α2,α3)
i(o1,o2,o3)

= p(α̃2)
o2

(
−δ

(α̃2)
(2)

)
V

(α1,α̃2,α3)
i(o1,o2,o3)

p(α3)
o3

(
δ
(α3)
(3)

)
V

(α1,α2,α3)
i(o1,o2,o3)

= p(α̃3)
o3

(
−δ

(α̃3)
(3)

)
V

(α1,α2,α̃3)
i(o1,o2,o3)

(18)

for αi = 1, .., Ni. The above forms of the interfacial displacement conditions result in pointwise satisfaction
of these constraints.

Once a set of constitutive relations for the phases has been specified the above set of governing equations
can be directly expressed in terms of the fundamental kinematic unknowns, V

(α1,α2,α3)
i(o1,o2,o3)

. A sufficiently general
form for the history-dependent constitutive relations relating the subcell stress and strain fields is given by

σij = Lijklεkl + λij (19)

where the Lijkl are the material stiffness components and the λij are the eigenstresses which represent the
evolving history-dependent response of a material. The forms of the governing equations based on the above
constitutive form are not given here for conciseness (see Ref. [5] for these details).

The above system of governing equations can be cast in the form

BV = Âε + Fλ (20)

which in turn can be solved for the concentration tensors to give

µ(α1,α2,α3) = A(α1,α2,α3)ε + F (α1,α2,α3|β1,β2,β3)λ(β1,β2,β3) (21)

For the full details of the ECM formulation (both infinite series and general truncated expansions) see Ref. [5].
The formulations for specialized microstructures are given in Refs. [11, 12].

The Variational Asymptotic Method for Unit Cell Homogenization (VAMUCH)

Recently, a new micromechanics model, the Variational Ssymptotic Method for Unit Cell Homogenization
(VAMUCH),15–17 has been developed by invoking three assumptions: 1) size of the microstructure is much
smaller than the macroscopic size of the material; 2) exact solutions of the field variables have volume
averages over the UC; 3) effective material properties are independent of macroscopic geometry, boundary
and loading conditions of the structure.

The derivation of VAMUCH starts from a variational statement of the heterogenous continuum. Tak-
ing advantage of the smallness of the microstructure, one can formulate the homogenization problem as a
constrained minimization problem posed over a single UC by carrying out an asymptotic analysis of the
variational statement. The final theory of VAMUCH for homogenizing elastic materials can be obtained by
minimizing

ΠΩ =
1

2Ω

∫

Ω

Cijkl

[
ε̄ij + χ(i|j)

] [
ε̄kl + χ(k|l)

]
dΩ (22)

subject to the following constraints

χi(x; d1/2, y2, y3) = χi(x;−d1/2, y2, y3) (23)
χi(x; y1, d2/2, y3) = χi(x; y1,−d2/2, y3) (24)
χi(x; y1, y2, d3/2) = χi(x; y1, y2,−d3/2) (25)
〈χi〉 = 0 (26)

where Eqs. (23)-(25) are the well-known periodic boundary conditions and Eqn. (26) helps uniquely determine
the fluctuation functions χi. Following the regular steps of calculus of variations, one can easily show that
the Euler-Lagrange equations corresponding to this constrained minimization problem are the same as the
Mathematical Homogenization Theories (MHT).15 Although VAMUCH can achieve the same accuracy of
MHT, VAMUCH is different from MHT in at least the following three aspects:
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• The periodic boundary conditions are derived in VAMUCH, while they are assumed a priori in MHT.

• The fluctuation functions are determined uniquely in VAMUCH due to Eq. (26), while they can only
be determined up to a constant in MHT.

• VAMUCH has an inherent variational nature which is convenient for numerical implementation, while
virtual quantities should be carefully chosen to make MHT variational.32

This constrained minimization problem can be solved analytically for very simple cases such as binary
composites.15 For general cases we need to turn to computational techniques for numerical solutions. Since
VAMUCH theory is variational, the finite element method is a natural choice as a method to solve this
problem. The details of finite element implementation are given in Ref. [16]. As the result, a companion
code VAMUCH has been developed as a general-purpose micromechanical analysis code. Although VAMUCH
has all the versatility of the finite element method, it is by no means the traditional displacement-base finite
element analysis. The code VAMUCH has the following distinctive features:

• No external load is necessary to perform the simulation and the complete set of material properties
can be predicted within one analysis.

• The fluctuation functions and local displacements can be determined uniquely;

• The effective material properties and recovered local fields are calculated directly with the same accu-
racy of the fluctuation functions. No postprocessing type calculations such as averaging stresses and
averaging strains are needed

• The dimensionality of the problem is determined by that of the periodicity of the UC. A complete 6×6
effective material matrix can be obtained even for a 1D unit cell.

For details of VAMUCH theory and implementation, please refer to Refs. [15–17].

Case Studies

These micromechanics models will be used to predict the bulk and local elastic responses of various types
of fiber reinforced composites. The resulting predictions will be compared to assess the accuracy with which
the different models are capable of predicting the local fields as well as the effective bulk properties of different
composite systems. For the purpose of comparison, we also use a finite element based micromechanics
approach (which is denoted as FEM) proposed by Sun and Vaidya.18 This method performs the conventional
stress analysis of a representative volume element by applying periodic and symmetric boundary conditions.
In this work, we used ANSYS to perform all the needed finite element analysis. Using this approach, only
the transverse shear moduli G23 can be calculated using 2D analysis, and all the other effective properties
are calculated using 3D analysis. However, all the other micromechanics models reviewed in the previous
section only require a 2D analysis for fiber reinforced composites.

A. Case 1: Eshelby problem

The first case is the Eshelby problem33 which deals with an isotropic circular fiber embedded in an infinite
isotropic matrix subjected to the uniform far-field stress σ∞22 . It is a plane strain elasticity problem and can
be solved exactly. Although this is not a micromechanics problem because no repeating UCs can be identified
in the material, we can consider a material with repeating UCs which have sufficiently small fiber volume
fraction (we choose 1% for this example) so that the interaction effects due to the presence of adjacent cells
are negligible. Except for this restriction, the exact solution provides an excellent benchmark for validation
of the accuracy of the local fields predicted by different micromechanics models.

For calculation, we choose the fiber to be boron with Young’s modulus E = 400.0 GPa and Poisson’s
ratio ν = 0.20, the matrix to be epoxy with Young’s modulus E = 3.50 GPa and Poisson’s ratio ν = 0.35.
The choice of these materials produces a high elastic moduli mismatch and thus a significant disturbance
in the stress field along the interface between fiber and matrix. To obtain the stress distribution within the
UC using micromechanics approaches, we need to calculate the effective properties first, which are listed in
Table 1. It can be observed that except for GMC, which slightly under predicts the moduli (E22, G12, G23)
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Table 1. Effective properties of boron/epoxy composites for Eshelby problem

Models E11 (MPa) E22 (MPa) G12 (MPa) G23 (MPa) ν12 ν23

GMC 7465 3785 1311 1309 0.3484 0.4435
HFGMC 7466 3801 1322 1317 0.3481 0.4424

ECM (5th order) 7466 3793 1315 1313 0.3482 0.4431
VAMUCH 7466 3801 1322 1317 0.3481 0.4424

FEM 7466 3801 1322 1317 0.3481 0.4424

S22 contour plot of Eshelby solution: Ansys results
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Figure 2. Contour plot of σ22 (MPa)
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S23 contour : Ansys results
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Figure 3. Contour plot of σ23 (MPa)
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and over predicts the Poisson’s ratios, all the other approaches obtain the same results up to the fourth
significant figure.

Next we can use these properties to solve the plane strain problem of the effective, homogenized medium
under the application of a far-field stress σ∞22 , which will generate a macroscopic strain field ε̄22 = 0.1%
and corresponding ε̄33 due to Possion’s effect. Such values can be fed back to the micromechanics models
to recover the stress distribution within the material. Figures 2 and 3 show the contour plots for the
distributions of σ22 and σ23 directly obtained using the exact solution, in which the stress concentrations
along the interface between fiber and matrix can be clearly observed. Although contour plots can provide
us some qualitative information, to rigorously assess the accuracy of micromechanics approaches, we plot
σ22 distributions predicted by micromechanics approaches (GMC, HFGMC, and VAMUCH) and the exact
solution along the lines y2 = 0 and y3 = 0 in Figure 4 and Figure 5, respectively. It is evident that GMC is not
predictive for the local field, yet HFGMC and VAMUCH have excellent agreements with the exact solution
except that the predictions of HFGMC for the stress field inside the fiber and adjacent to the interface are
slightly different from the exact solution. Both the continuous condition along y3 = 0 and discontinuous
condition along y2 = 0 are well captured by HFGMC and VAMUCH. The slight differences along the edges
are caused by the interaction effects due to presence of adjacent cells because our far-field stress σ∞22 is not
really uniform along the edges which can be observed form the contour plot in Figure 2. It has been verified
that if one chose a fiber volume fraction so low that σ∞22 is uniform along the edges and the prediction
of HFGMC and VAMUCH will be further improved. The discontinuity on the interface along y2 = 0 in
Figure 4 can be captured better if one refines the mesh in the vicinity. Although the effective properties are
not sensitive to the discretization schemes, the local fields are. In this case, we used 100× 100 subcells grid
for GMC and HFGMC, and a mesh of 4834 8-noded quadrilateral elements is used for VAMUCH, and the
same mesh is used for ANSYS to calculate G23, and the corresponding 3D mesh is extruded from this mesh
with two elements along the fiber direction to calculate all the other effective properties.
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Figure 4. Comparison of normal stress σ22 distribution along y2 = 0

B. Case 2: MOC microstructure

Next, we study a microstructure which is a square array with a square fiber in the center (Figure 6). We
called it the MOC microstructure because it is typically used by MOC, GMC and HFGMC.6 We use the
same boron fiber and epoxy matrix as the previous case. However, the fiber volume fraction is changed to
be 60% so that the effective properties can be strongly affected by the fibers and their interactions with the
matrix and with each other. The effective properties predicted by different approaches are listed in Table 2.
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Figure 6. A sketch of the MOC microstructure
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A 64× 64 subcell grid is used for GMC and HFGMC, a 2× 2 subcell grid is used for ECM, a mesh of 3763
8-noded elements is used for VAMUCH and the same mesh and its corresponding 3D mesh is used for FEM.
It can be observed that only VAMUCH and FEM have the same predictions for all the effective properties,
although all the approaches predict almost the same value for E11, and HFGMC’s predictions are very close
to those of VAMUCH and FEM. Overall, GMC under predicts E22, G12, G23 and over predicts the Poisson’s
ratios. Except E11, the predictions of ECM are located between GMC and HFGMC and close to those of
HFGMC.

To evaluate the accuracy of the local stress field predicted by the different approaches, we use a plane
strain problem by applying a biaxial loading such that σ22 = −10 MPa and σ33 = 100 MPa to the mi-
crostructure. We plot σ33 along y3 = 0 predicted by different approaches in Figure 7, where ANSYS results
are obtained by directly solving the plane strain problem without using the effective properties. It can
be clearly observed that VAMUCH and HFGMC have excellent agreements with the direct finite element
analysis of ANSYS, although the predictions of HFGMC are slightly off at the interface between fiber and
matrix. It is also observed that the local field obtained using GMC, although much improved compared to
those of case 1, are only predictive in an average sense. We have also compared other stress components and
tested with other types of loading such as transverse shear and longitudinal shear, and similar trends have
been found. Those results are not reported here for conciseness.

Table 2. Effective properties of boron/epoxy composites for MOC microstructure

Models E11 (MPa) E22 (MPa) G12 (MPa) G23 (MPa) ν12 ν23

GMC 241422 17440 4631 3203 0.2522 0.2673
HFGMC 241428 19803 5216 3390 0.2501 0.2000

ECM (7th order) 241426 19793 5161 3368 0.2502 0.1994
VAMUCH 241426 19864 5223 3391 0.2501 0.1978

FEM 241426 19864 5223 3391 0.2501 0.1978
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Figure 7. Comparison of normal stress σ33 distribution along y3 = 0

C. Case 3: X microstructure

The last case we study is an X shaped microstructure, which is sketched in Figure 8, where each quadrant
has two square fibers of the same size and equally spaced along the diagonal. The square fibers are per-
fectly connected with each other through the corners. The composite system considered is polymer-bonded
explosives (PBXs) with an explosive crystal inclusion of Young’s modulus E = 15300 MPa and Possion’s
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Figure 8. The sketch of X shape microstructure

ratio ν = 0.32 embedded in a binding matrix with Poisson’s ratio ν = 0.49. To investigate the predictions
from different approaches for different ratios of elastic moduli mismatches, we choose varying binding matrix
material so that its Young’s modulus Em takes different values from 0.7 MPa, 7 MPa, 70 MPa, 700 MPa,
and 7000 MPa. The fiber volume fraction is fixed at 50%.

Because of the special construction of this microstructure, singularities exist at all the connecting corners
of the fibers. Even the calculation of effective properties becomes sensitive to the discretization schemes used
by different methods. For this case, we used a 64 × 64 subcell grid for GMC and HFGMC, a 3 × 3 subcell
grid is used for ECM, a mesh of 5712 8-noded elements is used for VAMUCH and the same mesh and its
corresponding 3D mesh is used for the FEM. The effective properties with different Young’s modulus for the
binder predicted by different approaches are listed in Tables 3-7. We can observe the following from these
tables:

• When Em = 7000, all the approaches except GMC have excellent predictions for the effective properties.
As shown in Table 3, GMC significantly under predicts G12 and G23, slightly under predicts E11, E22

and ν12, and over predicts ν23.

• For other values of Em, the general trend is that when the contrast ratio of the Young’s moduli of fiber
and matrix becomes larger, the differences among the predictions from different approaches becomes
larger, although all the approaches still predict a similar value for E11, which approximately obeys the
Voigt rule of mixture for fiber reinforce composites.

• For other values of Em, VAMUCH and FEM also predict the same or similar value for E22 and
Poisson’s ratios. VAMUCH predictions for G23 are slightly larger than those of FEM predictions,
while VAMUCH predictions for G12 are smaller than FEM and the difference become quite significant
as the contrast ratio becomes large.

• For other values of Em, the predictions of GMC, HFGMC, and ECM for E22, G12, G23, although very
different among themselves, are significantly lower than those of VAMUCH and FEM, while Poisson’s
ratios predicted from GMC, HFGMC, and ECM are bigger than those from VAMUCH and FEM. As
the contrast ratio becomes larger, the difference between these two sets of results become much bigger.

• It is interesting to find out the GMC always predicts the same value for G12 and G23 for this mi-
crostructure for each value of Em.

• The predictions of ECM are located between those of GMC and HFGMC for Em = 700 MPa, 70 MPa
and 7 MPa. However, such a trend is not present for Em = 7000 MPa and 0.7 MPa. Particularly, for
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Table 3. Effective properties of PBX 9501 composites for X microstructure (Em = 7000 MPa)

Models E11 (MPa) E22 (MPa) G12 (MPa) G23 (MPa) ν12 ν23

GMC 11150 10170 3343 3343 0.405 0.5212
HFGMC 11246 10530 3688 3794 0.4126 0.508

ECM (7th order) 11247 10546 3679 3804 0.4126 0.5072
VAMUCH 11247 10531 3690 3795 0.4126 0.5078

FEM 11246 10531 3690 3795 0.4126 0.5078

Table 4. Effective properties of PBX 9501 composites for X microstructure (Em = 700 MPa)

Models E11 (MPa) E22 (MPa) G12 (MPa) G23 (MPa) ν12 ν23

GMC 8000 1687 451.5 451.5 0.405 0.8687
HFGMC 8032 2544 1025 1406 0.4039 0.8032

ECM (7th order) 8024 2089 885.3 1314 0.4042 0.8382
VAMUCH 8041 2693 1207 1525 0.4036 0.7919

FEM 8040 2694 1213 1522 0.4036 0.7919

Table 5. Effective properties of PBX 9501 composites for X microstructure (Em = 70 MPa)

Models E11 (MPa) E22 (MPa) G12 (MPa) G23 (MPa) ν12 ν23

GMC 7685 182.5 46.79 46.79 0.405 0.9505
HFGMC 7690 376.2 153.2 277.3 0.3991 0.9037

ECM (7th order) 7688 233.7 112.1 214.4 0.4015 0.9387
VAMUCH 7701 798 553 715 0.3854 0.8232

FEM 7704 799 664 711 0.3853 0.8229

Table 6. Effective properties of PBX 9501 composites for X microstructure (Em = 7 MPa)

Models E11 (MPa) E22 (MPa) G12 (MPa) G23 (MPa) ν12 ν23

GMC 7654 18.41 4.696 4.696 0.405 0.9597
HFGMC 7654 40.16 18.43 33.96 0.3976 0.9197

ECM (7th order) 7654 23.67 11.53 23.00 0.4014 0.9503
VAMUCH 7658 502 468 569 0.3428 0.6839

FEM 7660 502 597 563 0.3425 0.6839

Table 7. Effective properties of PBX 9501 composites for X microstructure (Em = 0.7 MPa)

Models E11 (MPa) E22 (MPa) G12 (MPa) G23 (MPa) ν12 ν23

GMC 7650 1.842 0.4698 0.4698 0.405 0.9607
HFGMC 7650 4.058 4.123 6.367 0.3909 0.9277

ECM (7th order) 7650 0.3535 1.146 0.3178 0.4044 0.9925
VAMUCH 7651 460 459 553 0.3228 0.6223

FEM 7651 460 590 546 0.3228 0.6223
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Em = 0.7 MPa, the predictions of ECM for E22 and G23 are the lowest, while the method predicts the
highest value for ν23.

At this stage, we believe it is premature to conclude which sets of predictions are more reliable than
others. First of all, it is impractical to connect two fibers through one material point (the corner). It is
a mathematical idealization of small contacting areas. The singularity due to the stress bridging through
the connecting corners creates difficult for all numerical approaches. Second, we are limited by resources
to perform convergence studies for FEM results because its calculations except G23 requires 3D analysis.
Although one would tend to blindly believe that the FEM results are the most reliable, this is not necessarily
true. The reason is that even if all the results are converged, we have strong reasons to believe the assumed
boundary conditions, particularly those applied for transverse shear and longitudinal shear, will significantly
affect the results because of the extreme microstructural construction and contrast ratio of constituent
properties.

Nevertheless, the aforementioned points by no means diminish the value of this case and the significance
of the presented results. Due to its special construction and high contrast ratio, this case provides a great
challenge to all micromechanics approaches. It clearly discloses the fallacy about micromechanics that
every model “works” as far as effective properties concerned. This is a case worthy of the attention of
the micromechanics community and more extensive research on issues such as convergence studies, size
effects of the contacting areas, and even physical experiments, which are needed to make more authoritative
conclusions.
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Figure 9. Comparison of von Mises stress distribution along y2 = 0

Although the different approaches predict different effective properties, it is interesting to observe what
happens in the predictions of local fields. Here we take the moderate case with Em = 700 MPa to study a
plane strain problem by applying a biaxial loading such that σ22 = −10 MPa and σ33 = 100 MPa to the
microstructure. We plot the von Mises stress along y2 = 0 predicted by different approaches in Figure 9,
where ANSYS results are obtained by directly solving the plane strain problem without using the effective
properties. It can be clearly observed that VAMUCH results are almost on the top of ANSYS results.
HFGMC also has an excellent agreement with ANSYS although slight deviations have been found along
the edges, fiber-matrix interfaces and the middle part of the microstructure. GMC predicts a uniform
distribution which only provides an average prediction. To display the severe stress concentration around
the connecting corner between inclusions, we provide a detailed contour plot around one corner in Figure 10.
Indeed, stress concentration only happens in a very small area around the connecting point.

Conclusions

For the first time, several state-of-the art micromechanics models have been critically evaluated as a
joint effort among the developers of these models. Such a comparison is valuable to researchers working to
adopting a model to their particular applications or to understand what the current state of the art is in

15 of 17

American Institute of Aeronautics and Astronautics



Figure 10. Contour plot of von Mises stress (MPa) distribution around a connecting corner

predictive capabilities in the field of micromechanics. Additionally the presented results (especially the local
field predictions) will represent test cases for researchers seeking to determine the accuracy of the predictive
capabilities of new micromechanics models. The X shape microstructure provides a very challenging test
case for all micromechanics approaches, and more research is needed to pinpoint the real limits of the
micromechanics approach in general, and various micromechanics models in particular.
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