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BACKGROUND & MOTIVATION
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Design Context
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Overall Vehicle Design Without Historical Data
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Design Challenges for Advanced Configurations
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Design Challenges for Advanced Configurations

6



7

Design Challenges for Advanced Configurations
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STRUCTURAL TECHNOLOGY PERFORMANCE

ESTIMATION
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Benchmark Technology Performance Estimation Process
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Structural Design Space
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Structural Design Space
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Technology Design Space
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Technology Design Space
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DEVELOPMENT OF RAPID AIRFRAME DESIGN ENVIRONMENT
NASA Transformational Tools & Technologies Program
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What is a “Design Environment”
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Evolution of Toolkit Implementation
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Evolution of Toolkit Implementation
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Evolution of Toolkit Implementation
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Evolution of Toolkit Implementation
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AEROELASTIC DESIGN SPACE EXPLORATION
Wingtip Propulsion Configuration
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Design Space Exploration
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Define Design 
Variables & 

Bounds

Visualize Responses

Develop 
Sampling Method

Fit Surrogates
Interactive

https://www.jmp.com/en_us/applications/design-of-experiments.htmlJMP Tutorials:

https://www.jmp.com/en_us/applications/design-of-experiments.html
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Research Problem Definition

• Important Considerations:

– Time Frame – 6 to 7 months for completion of work

– Aeroelasticity considered for responses, constraints, and objectives

• Assumptions

– Iteratively converged and developed through project timeline
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Overall Objective:
Explore the design space of a wing with engines located in the outboard region
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Enabling Capabilities

• Rapid Airframe Design 
Environment (RADE)
– Early phase multidisciplinary design 

toolkit

– Developed through NASA TTT 
Program under contract

– NASA Tech Lead: Erik Olson

• Environmental Design Space 
(EDS)
– Vehicle level performance modeling 

with environmental response focus

• NASA AATT Dashboard
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Creating a Environment for Wingtip Propulsion Aeroelastic Design
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Design Environment
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Modeling in RADE
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Modeling in RADE: Outer Mold Line

• All vehicle designs start with representation of OML

• Baseline models are created with OpenVSP with fundamental regions:

– Wing

– Fuselage

• Parametric changes enabled through OpenVSP python API

• OuterMoldLine object is a container of named regions with reference geometries
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Modeling in RADE: Aerodynamics
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Elementary 

Base Classes

Geometry

Mesh

Feature Base 

Classes

Flow Conditions

Vehicle State

Controls States

Model Base 

Classes

2-D Airfoil

Panel Model

3-D CFD

AVL

Star-CCM+

Euler

Star-CCM+

RANS

Nastran DL

Star-CCM+ 

2D RANSXFOIL
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Modeling in RADE: Structural Geometry & Meshing
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Modeling in RADE: Representation of “Fidelity”

Model Representation Options
Complexity, Order, & Dimensionality (Fidelity)
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Modeling in RADE: Mass & Loads
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Seamless, geometry-centric integration of disciplinary toolsets 

Transform 

Loads
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Modeling in RADE: Mass & Loads

• Some of the latest work in RADE 
(and most relevant to this project) 
is with dynamic loads and their 
effect on structural sizing

• A paper was published for AIAA 
SciTech 2020

• Goal:
– Quantify the increment of structural 

mass added to the wing by 
considering dynamic gust cases in 
addition to typical early-phase static 
maneuver loads
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Modeling in RADE: Mass & Loads
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Modeling in RADE: Mass & Loads
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Modeling in RADE: Mass & Loads
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Modeling in RADE: Mass & Loads
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• Total Simulation Time: 5s

• Method for Modal Analysis: 
Modified Givens

• Gust delay: 1s

• Modes: 10

Characteristic Name

Total Sim Time 5s

Method Modal Analysis Modified Givens

Gust Delay 1s

Modes 10
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Modeling in RADE: Mass & Loads
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Modeling in RADE: Properties & Structural Sizing

• Materials: Isotropic, Orthotropic, Anisotropic, Composite

• Properties: Beam, Shell, Smeared Stiffness, Guyan Reduction

• Structural Sizing:
– Nastran

o Gradient-based optimization of isotropic materials

o “Fully stressed” sizing

o Limited number of built-in failure modes

o Offline gradient-based optimization currently under development

– HyperSizer
o Grid search approach with custom bounding convergence

o Optimization for all material types and granularity for skin & stiffener dimensions/materials

o 30+ failure modes can be used for every type of beam and panel concept
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Modeling in RADE: Structural Sizing with Dynamic Loads
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136 ft peak distance
27.7 ft/s peak speed

278 ft peak distance
31.2 ft/s peak speed Considering All Load Cases in Constraints

Structural Sizing Responses
Optimizing the structure independently for each load case & time step selection criteria
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Modeling in RADE: Structural Sizing with Dynamic Loads
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GT-ASDL PEGASUS Model in RADE: Structural Geometry
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GT-ASDL PEGASUS Model in RADE: Structural Mesh

Target Element Length

7 in
6 in

5 in 4 in
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GT-ASDL PEGASUS Model in RADE: AVL

Wing Elements:
Main Wing
Horizontal Tail

Control Surfaces:
Elevator
𝜂= [0: 1]
𝑐 = [0.6: 1]

Load Cases (Default):
Mach = 0.5
Altitude = 20,000 ft
Constraints:

Load Factors = [-1.0, 2.5]
Pitch Moment = 0
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GT-ASDL PEGASUS Model in RADE: Nastran
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GT-ASDL PEGASUS Model in RADE: HyperSizer Setup
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GT-ASDL PEGASUS Model in RADE: HyperSizer Results

Skin Thickness Stringer Web Height
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GT-ASDL PEGASUS Model in RADE: HyperSizer Results

Minimum Margin of Safety Critical Load Case

Critical Failure Mode Critical Failure Method
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TOW-STEERED COMPOSITES
Overview

Structural Weight Estimation

TSC Performance Estimation

Value Assessment
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Objectives for TSC Technology Performance Estimation

• Obtain TSC weight reduction performance as a function of Area (Wing 
Loading), Aspect Ratio design space to perform systems level trades: 
150PAX TBW & 300PAX T&W
– Structural Weight Estimation

– Baseline & Technology Vehicles

– Optimization of Tow-Steering w/in Area/AR Design Space

• Formulate breakdown of sources of uncertainty associated with 
implementation of TSC on production-phase aircraft
– Enumeration of Sources of Uncertainty

– Mapping to Technology Performance Estimation Process



49

Approach for Performance Estimation in Planform Design Space
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Structural Weight 
Estimation

Bayesian 
Surrogate Model

Initial Training DoE
(TSC)Model Building DoE

(Baseline)

Baseline Weight Group 1
Baseline Weight Group 2

Structural Weight 
Estimation

Adaptive Sampling

Update DoE

TSC Weight Group 1
TSC Weight Group 2

Optimize 
Surrogate

Model Building
Optimal DoE

FRWI1_TSC
TSC Weight Group 1/Baseline Weight Group 1

FRWI2_TSC
TSC Weight Group 2/Baseline Weight Group 1
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TOW-STEERED COMPOSITES
Overview

Structural Weight Estimation

TSC Performance Estimation

Value Assessment
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Structural Weight Estimation: OML Parameterization
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Structural Weight Estimation: Structural Configuration
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S=1400 ft2 AR=22 S=1700 ft2 AR=22

S=1400 ft2 AR=16 S=1700 ft2 AR=16
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Structural Weight Estimation: Aeroelastic Loads
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Nastran Doublet Lattice Aeroelastic 
Model

• Integrated model with plate splines to connect 
DL with structural mesh for loads and 
displacements transfer

Static Loads (Vortex Lattice)

• Standalone aerodynamics analysis for low order 
𝐶𝐿, 𝐶𝑀 distributions and loads generation

• Used as a camber correction for Nastran 
doublet lattice model
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Structural Sizing in HyperSizer

• Currently updating a transonic truss-braced 
wing (TTBW) wingbox structural sizing program 
to have parametric laminate orientations
– Aeroelastic load analysis with Athena Vortex Lattice 

and Nastran
– Solid mechanic analysis with Nastran
– Structural property and failure analysis with 

HyperSizer

• Original program used effective laminates, but 
in HyperSizer these laminates are restricted to 
only use the ply angles 0°, ±45°, and 90°
– Skin panels now use discrete laminates that add an 

offset to these ply angles

• Original program had weight convergence 
issues due to bad iteration logic between 
material properties and aeroelastic loads
– Alternate iteration strategy has been implemented 

and resolves problem
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HyperFEA iteration weights

TTBW OML and structure



55

Structural Sizing in HyperSizer
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Structural Sizing in HyperSizer
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TOW-STEERED COMPOSITES
Overview

Structural Weight Estimation

TSC Performance Estimation

Value Assessment
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TSC Performance Estimation: Tow-Steering Optimization
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Structural Weight 
Estimation

Bayesian 
Surrogate Model

Initial Training DoE
(TSC)

Adaptive Sampling

Update DoE

TSC Weight Group 1
TSC Weight Group 2

Optimize 
Surrogate

Model Building
Optimal DoE

FRWI1_TSC
TSC Weight Group 1/Baseline Weight Group 1

FRWI2_TSC
TSC Weight Group 2/Baseline Weight Group 1



59

TSC Performance Estimation: Tow-Steering Optimization
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Preliminary Testing for Shape Function Implementation
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Preliminary Testing for Shape Function Implementation

61



62

Optimized TSC for Truss Braced Wing
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TBW Model Building DoE for FLOPS Implementation
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Visualization of Surrogate Model Fit: TBW

Better performing 
points have less 
uncertainty due to 
increased density of 
samples in favorable 
regions

Worse performing 
points have more 
uncertainty due to 
sparse sampling 
from poor regions
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TTBW Structural Weight
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TTBW TSC-to-Baseline Ratio

FRWI1_TSC (EDS Tuning Parameter) FRWI2_TSC (EDS Tuning Parameter)
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CRM Model Building DoE for FLOPS Implementation
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CRM Model Building DoE for FLOPS Implementation
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Visualization of Surrogate Model Fit: CRM
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CRM Optimal Tow-Steering
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Area = 4817 sq ft
AR = 13.55
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Weight Reduction Compared to Baseline: CRM
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