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Design Context

« Conceptual Design of Aerospace Vehicles

— Design space exploration for performance trends — converge toward an
optimal or robust feasible design region

— Translate requirements into a physical description of a vehicle
— Traditionally executed with empirical models of historical design data

* Advanced Configurations in the Conceptual Design Phase
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Overall VEhEDESiQI‘I Without Historical Datz

» Potential options for overcoming a lack of historical data in
traditional conceptual design

— Technology and configuration dials for empirical models
— First principles
— Physics-based computational modeling

* |Important tradeoff Uncertainty
— Accuracy/uncertainty vs. cost ‘

At different stages in design, the
appropriate point could be anywhere —
along this Pareto front
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Design Challenges faor Advanced Configurations

* Why causes the uncertainty/cost tradeoff in design metrics

for advanced configurations?

Undefined detailed features and characteristics
Geometry and feature complexity

Order of physics-based equations

Execution time of computational code
Pre-processing time for model generation
Potential number of required disciplines
Dimensionality of the overall design space

Uncertainty

—

Multiple levels of the design space
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Design Challenges faor Advanced Configurations

* Why causes the uncertainty/cost tradeoff in design metrics

for advanced configurations?

Undefined detailed features and characteristics
Geometry and feature complexity
Order of physics-based equations
Execution time of computational code
Pre-processing time for model generation
Potential number of required disciplines
Dimensionality of the overall design space

Uncertainty

—

Multiple levels of fidelity
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Design Challenges faor Advanced Configurations

* Why causes the uncertainty/cost tradeoff in design metrics

for advanced configurations?

Undefined detailed features and characteristics
Geometry and feature complexity

Manual pre-processing

- and execution results in
UI‘IEEI‘taII"IlY Higher costs

Order of physics-based equations $
Execution time of computational code -k * ‘
Pre-processing time for model generation )

Potential number of required disciplines
Dimensionality of the overall design space

—

Large degree of automation
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STRUCTURAL TECHNOLOGY PERFORMANCE
ESTIMATION




Benchmark Technology Performance Estimation Process

Vehicle Technology Analysis Results

Configuration Configuration (Internal Loads,
Deflections, etc.)

4

Technology

Technology
Cogggipt# =L Performance Development
9 Estimation & Demonstration

Technology
AW‘ Performance

Structural
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Structural I]E;ign Space

Wing Center Section
* Area * Cabin Length
QOuter Mold Line « AR » Cabin Width Structural
(Conceptucl Design) « TR = RCB % Chord Model
* Sweep * Sweep
Outboard Wing Centerbody
* FS % Chord * # Bays
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i « Rib Pitch « FS % Chord Model
Skin Stringer Frame
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Structural Dé;ign Space

Wing Center Section
* Area * Cabin Length
Outer Mold Line « AR * Cabin Width
(Conceptral Derign) * TR * RCB % Chord
* Sweep * Sweep
Outboard Wing Centerbody
* FS % Chord * # Bays .
Sz_f“cmml Layout « RS % Chord * RS % Chord Liarsialis
(Coneeptual] Prelim Desir) « RibPitch = FS % Chord Modeling,
Design, &
Analysis
Effort
Skin Stringer Frame
* Thickness + Height * Height
TEChﬂDngY * Matenial * Thickness * Thickness
(Preiim/ Detail Design) » Matetial  * Material
* RodDiam = Foam Width
" Spacing * Spacing
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Technology Design Space
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Technulngvy De—sign Space

Baseline Structure Concept (Wing)
Blade Stiffened Composites (Same material as PRSEUS — different knockdowns, etc.)

Confirmed baselines

with Boeing technology
development team

Baseline Structure Concept (Centerbody)

Qirthogrd Stiffened Sandwich Composites (Same material as PRSEUS — different knockdowns, etc.)
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DEVELOPMENT OF RAPID AIRFRAME DESIGN ENVIRONMENT

NASA Transformational Tools & Technologies Program
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What is a "Design Environment”

* A representative description and implementation of design events

— Results in a testbed to generate data to examine trades in design metfrics,
explore design spaces, optimize configurations, etc.

» Graphical vs. scripting implementation

» Enabling integration software.: Design Environment

Phoenix Integration ModelCenter
OpenMDAO

Siemens PLM/NX

Dassault Systemes 3DEXPERIENCE
GEMS

Many more...

il > 2 3
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Evolution of Toolkit Implementation

*  Project with NASA Transformational Tools & Technologies (T3)
— Obijective: Bring higher fidelity structural modeling earlier in the design process
— Resulted in development of the Rapid Airframe Design Environment (RADE)

— Initial development focused on enabling a monolithic workflow similar to FEM pre-
processing

User Interface

Most Important Characteristics
For Successful Implementation

Strucbural
Geomelry

Robust Parametric Execution

Robust Automation

E-.;t:u;;—::::l FIEK' bll Ity
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Evolution of Toolkit Implementation

Robust Parametric Execution r Robust Automation Flexibility

ictural Weight Estimation

| : - 1
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Robust Parametric Execution

Evolution of Toolkit Implementation

=

Robust Automation

Flexibility
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Comprehensive Multidisciplinary
Design Optimization and Analysis

Rapid Airframe Design Environment

Geometry & Pre Discipbnary Tools




Evolution of Toolkit Implementation

Robust Parametric Execution ‘ Robust Automation Flexibility

Comprehensive Multidisciplinary
Design Optimization and Analysis

Rapid Airframe Design Environment

“Design Environment” became a misnomer in RADE as
the software transitioned toward an MDAO toolkit

. —_— ] . > — S~
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AEROELASTIC DESIGN SPACE EXPLORATION

Wingtip Propulsion Configuration




Design Space Exploration

Visualize Responses
Define Design
Variables &

Bounds

Develop
Sampling Method

Fit Surrogates

Interactive
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https://www.jmp.com/en_us/applications/design-of-experiments.html

Research Problem Definition

Overall Objective:
Explore the design space of a wing with engines located in the outboard region

- Important Considerations:
— Time Frame - 6 to 7 months for completion of work l

— Aeroelasticity considered for responses, constraints, and objectives . ﬁ - s

« Assumptions
— Iteratively converged and developed through project timeline T—
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Enabling Capabilities

- Rapid Airframe Design

Environment (RADE)
— Early phase multidisciplinary design e
toolkit Foses s —
- Developed through NASA TTT : | e

Program under contract
— NASA Tech Lead: Erik Olson

Flight Mechanics

- Environmental Design Space
(EDS)

— Vehicle level performance modeling
with environmental response focus

« NASA AATT Dashboard
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Creating a Environment for Wingtip Propulsion Aeroelastic Design

Performance

Aerodynamics

Mass Estimation
==

Flight
Mechanics

= |
Georgia | Aerospace Systems

Mission &

?

Optimization

Design Environment

A
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- 17
A

Data
Management

b
-

Concept

Preliminary

Processing
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Modeling in RADE

Robust Parametric Execution Robust Automation Flexibility

Base (Abstract) Layer

Model Base
Classes

Result Base
Classes

Feature Base
Classes

Elementary
Base Classes

Forces/Moments Load Case 2-D Aero Model

Cp Distribution

Nodes/Elements Flight Condition Panel Aero Model Structural Weight
Point Mass Assembly Beam Model Drag Polar
Geometry/Shape Mesh Shell Model Load Distribution

Rigid Connections Propulsion Model

Design Variable

Rigid Connections
Control System

Implementation Laye Execution

Third Party Software

Nastran linear static analysis
AVL trimmed aero analysis

Raw Output

Text Files
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** Madeling in RADE: Duter Mald Line

- All vehicle designs start with representation of OML

- Baseline models are created with OpenVSP with fundamental regions:
- Wing
- Fuselage

- Parametric changes enabled through OpenVSP python API

- QuterMoldLine object is a container of named regions with reference geometries
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\

Feature Base
Classes

Flow Conditions

Vehicle State

Controls States

Modeling in RADE: Aerodynamics

e
-----
---------

Star-CCM+
‘ 2D RANS

g
Elementary

Base Classes

Geometry

Mesh

~

|
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Classes
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2-D Airfoll

Panel Model

3-D CFD
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Modeling in RADE: Structural Geometry @ Meshing

Flexible definition of OML (OpenVSP) and Structural Geometry (AFEM) Robust skin panel identification

Robust join methods for congruency and
mesh continuity
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Modeling in RADE: Representation of “Fidelity”

Model Representation Options
Complexity, Order, & Dimensionality (Fidelity)

Shell of spanwise variant sectional parameters

Shell of constant spanwise variant thickness

Shell of constant component thickness

Guyan Reduced Stiffness Matrix

Increasing Fidelity
# Discretizations

Beam of spanwise variant El, GJ

Beam of constant El, GJ
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Modeling in RADE: Mass & Loads

Seamless, geometry-centric integration of disciplinary toolsets

Transform
Loads

Aerospace Systems
Design Laboratory
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Modeling in RADE: Mass & Loads

¢ S O m e Of th e | ateSt WO r k i n RA D E Structural Sizing of Unconventional Aircraft under Static and
. . Dynamic Aeroelastic Loading
and most relevant to this project .
avid Solano®, Darshan Sarojini’, Jason Corman®, and Dimitri Mavris
. . . . Georgia Institute of Technology, Atlanta, GA, 30363 Code
IS with dynamic loads and their et e et o e st s i i

dynamic loading conditions, allowing the designer to take into account dynamics early in
. . the design process. For that, two important tools, the Rapid Airframe Design Environment
(RADE), and NASRAN are used. The framework allows the sizing of conventional aircraft, like
e e C O n S r u C u ra S I Z I n the NASA Common Research Model Aircraft, and unconventional, such as a thruss-braced
wing, put forward by Boeing and NASA. In the paper, static aeroelastic loads such as 2.5 and
-1 G maneuvers and dynamic aeroelastic loads, such as sharp or One-Minus cosine gust are
tested and contrasted. Finally, sizing of the wing is performed using HyperSizer.

L Introduction

- A paper was published for AIAA

Modern and future aircraft are continuously becoming lighter and more efficient. Metrics such as decreased fuel
. burn, noise, NOx emissions, and takeoff field length are priority for the aircraft of the future. Thus, to push the
envelope, aircraft designers are attempting new designs, such as the new N+3 concepts NASA is creating, which involve
S C I Te C h 2 O 2 O blended wing body configurations and double-bubble configurations [1]. Other designs include the Boe! soni
Truss-Braced Wing (TBW) [2], composite very high aspect ratio wings, box wings, and other innovative designs that
will be possible thanks to advances in material technologies. On the lower speed side, designs such as the sailplane SB
13 from Akaflieg Braunshweig [3] and the AK-X prototype from Akaflieg Karlsruhe [4] are also plausible design

alternatives. These new designs, however, experience dynamic loading conditions that are large enough to be relevant
during sizing, and tools are needed to correctly ass

ss such loads. These tools, however, are normally used at later
stages of the design process, and by then critical decisions in terms of configuration and size may have been made,

- which translates in correcting efforts that are costly and time-consuming. On the other hand, through the use of the
o O a appropriate structural model, it is possible for the engineer to make detailed load and aerodynamic analysis such as the
[ ]

ones encountered during maneuvers, gusts, and flutter [S].

- - B. Structural Airworthiness
— u a n tl y t e I n C re I I I e nt O St r u Ct u ra The Federal Aviation Administration (FAA) sets Federal Aviation Regulations (FARs) to place requirements on

aircraft design, including structural design, to achieve a desired level of safety and reliability for all certified aircraft.
. These regulations are intended to account for the worst-case loads to occur in flight [6, 7].
m d d d t t h b Dynamic load conditions, in particular, often result in the most critical or constraining loads being developed on the
a SS a e O e W I n y structure, and may lead to catastrophic structural failures if unforeseen. A case in point is the loss of American Airlines
Flight 587 (an Airbus A300B4 aircraft) due to structural failure of the vertical tail, when the first officer’s rapid, and
- - - - aggressive rudder inputs in response to a wake turbulence encounter resulted in dynamic loads that exceeded the ultimate
CO n S I d e r I n g d y n a m I C gu St Ca S eS I n loads that the tail had been designed for. Thus dynamic load conditions must be thoroughly accounted for during
structural design and tested for during the certification process [8—10]. Given the monetary cost and time requirements
. . . . associated with certification programs, a capability that allows dynamic loads arising from constraining maneuver
d d t n t t I r | h t t scenarios to be better predicted earlier in the design process is a definite advantage for the aircraft manufacturer. Such a
a I I O O y p I C a e a y_ p a S e S a I C simulation framework would provide a tool for determining the loads that develop during these maneuvers for a given
design, thus enabling better decisions in the design of safe and reliable structures in the aircraft design process.
m a n e u Ve r | O a d S *Graduate Research Associate, Aerospace Systems Design Lab, Dept. of Acrospace Engineering, AIAA Student Member
*Senior Graduate Research Associate, Aerospace Systems Design Lab, Dept. of Acrospace Engineering, AIAA Student Member
*Research Engineer II, Aerospace Systems Design Lab, Dept. of Aerospace Engineering, AIAA Member
$Professor, Aerospace Systems Design Lab, Dept. of Aerospace Engineering, ATAA Fellow

|
|
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Modeling in RADE: Mass & Loads

Mesh Generation

. Non-Structural Loads -
Initial Structural -
Sizing | Fuel | | Engine ‘ FAR
v : Regulations
— Material Properties St
Jig Deflection | Metallic Composite |
v
Deflected OML : o L)
‘ Factor
Maneuvers
v
Structures Pre-Processing
| Geometry || Mesh ‘
] ] Aerodynamic Pre-Processing
Aerodynamic Pre-Processing [ Geometry | [ Mesh |
I < Aircraft
Mass
Static Aeroelastic Load Sizing Properties

Static/Dynamic Sizing y y

Dynamic Aeroelastic Load
Sizing
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Modeling in RADE: Mass & Loads

RADE Environment Static Aeroelastic Sizing

From Fixed Pitch
Aerodynamic Create Maneuvers, FAR
Aerodynamic Input File Other Flight Requirements
pre-processing Conditions

bdf File

From Structural Re-Run Static Analysis

NASTRAN

pre- ])l'nnessi ng

SOL 144

.op2 file >
Loads/Stresses/Deflections v hlﬁlllg l;[]()l)
Prepare
Aeroelastic

Loads
Metallic - IVE-10] BRA[1]

]
!
)
/
!
!
!
[
1
I
I
s
\
\
A
A
v
A}
A}
A

¥ .
Sized Structural

Properties of - 1 Og
-

Wing, Strut....
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RADE Environment

Modeling in RADE: Mass & Loads

Dynamic Aeroelastic Sizing

1000000 2000000 3000000

v Constraints, Tolerances are satisfied

Mx

i . 20000
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Madeling in RADE: Mass & Loads

Distance Traveled (ft)

 Total Simulation Time: bs

- Method for Modal Analysis:
— Modified Givens

- Gust delay: 1s

« Modes: 10
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: Total Sim Time 5s
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Modeling in RADE: Mass & Loads

136 ft peak distance, peak speed 27.7 ft/s
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Modeling in RADE: Properties @ Structural dizing

- Materials: Isotropic, Orthotropic, Anisotropic, Composite
- Properties: Beam, Shell, Smeared Stiffness, Guyan Reduction

- Structural Sizing:

— Nastran
o Gradient-based optimization of isotropic materials
o “Fully stressed” sizing
o Limited number of built-in failure modes
o Offline gradient-based optimization currently under development

— HyperSizer
o Grid search approach with custom bounding convergence
o Optimization for all material types and granularity for skin & stiffener dimensions/materials
o 30+ failure modes can be used for every type of beam and panel concept

Georgia ‘Jﬁ\ Aerospace Systems
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Modeling in RADE: Structural Sizing with Dynamic Loads

Structural Sizing Responses

Optimizing the structure independently for each load case & time step selection criteria

136 ft peak distance
27.7 ft/s peak speed
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1000 ~

Static Sizing

Dynamic Sizing Fmax
Dynamic Sizing Fmin

Dynamic Sizing Mmax
Dynamic Sizing Mmin

T T T T T
0 2 4 6 8
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Modeling in RADE: Structural Sizing with Dynamic Loads

—— static sizing

all gust sizin
600 - 9 9

500

400 ~

mass of sectionlb m
(3]
[
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o

o
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GT-ASDL PEGASUS Made! in RADE: Structural Leometry




Structural Mesh
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GT-ASDL PEGASUS Madel in RADE: AVL

Wing Elements:
Main Wing
Horizontal Tail

Control Surfaces:
Elevator
n=1[0:1]
c =[0.6: 1]

Load Cases (Default):
Mach = 0.5
Altitude = 20,000 ft
: = Constraints:
y wiyx Load Factors = [-1.0, 2.5]
Pitch Moment =0

Az lm = -45°
Elev = 20°

A¥L 3.35
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GT-ASDL PEGASUS Maodel in RADE: Nastran

ERREEE EREEEEE
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GT-ASDL PEGASUS Maodel in RADE: Rypersizer Setup

~Component Result

Assembly |1 < |Upper Skin | ¢ ! Weight (Ibm]
Component | 57 v |WingWingSkinUpperDD | Unit Wb /2 [6.0838 |
Concept | Integral Blade (Optimum) M M Available Failure Analyses =
S IE| Location Analysis Decription Lim./UIt. M5 Load Case

Dimensions | Failure | FreeBody |  FEAloads | Stresses | Buckling | Properties | Opt Component | Crippling - Buckling Interaction, Johnson-Euler Ultimate -~ |0.009934 1

Req. Designs = Candidates |81 | | All Designs | Web, unsup... | Isotropic Strength, Yield, Von Mises-Hill Criterion Limit | 0.08258 1

Web, unsup... | |sotropic 5trength, Yield, Longitudinal Direction Limit - | 0.0844 1

_ Dimension | Min Max Steps ET:E? FrEIZE Result | Material Component Crippling, Isotropic, Miu, Formed and Extruded Sections Ultimate | 0.1162 1

L— ¥ Tan s s SOt ot 1TV, Formed and Extruded Sections Ultimate - |0.1162 1

setup | loadSets | loadCases | Units 1 Motes | summary | CADInterface | Ultimate, Von Mises-Hill Criterion Ultimate | 0.1839 1

Hpne Run Time Weight Total Summary information is for the most recent sizing only. For example, if the last sizing was for a | Uttimate, Longitudinal Direction Ultimate | 0.1868 ]

single component, then this information applies to that component only. The summary tree
00:00:17 1360439 contains weight information for the entire model. , Ultimate, Longitudinal Direction Ultimate + |0.2404 1

Hueb r Beam Weights —Panel Weights | Ultimate, Von Mises-Hill Criterion Ultimate | 0.2924 1
; o Unit Weight Unit Weight i J i imi - |0
m Assembly #1 (678.6573 Ibm) 'UPPET Skin g d ial wy Shear Interaction Limit 0.5808 1
" . b ] 3740101 ixial Limt  +|0.5809 1
-EM Assembly #2 (509.4594 Ibm) "Lower Skin
m Assembly #3 (87.13067 Ibm) _spa“_ Total Length Total Area , Yield, Longitudinal Direction Limit - | 0.6698 1
BB Assembly #4 (85.2412 Ibm) "Ribs" D 363.7572 | Yield, Von Mises-Hill Criterion Limit - | 0.7402 1
& E Displ SE‘ty ) Total Weight Total Weight Humn, with Transverse Shear Flexibility Ultimate = |1.932 1
isplay 5 otal Weig otal Weig : —
#-%* Components b ] 1360489 E Lt 1902 1
ial wy Shear Interaction Limit - | 1.962 1
r Failure Mode Weights iergy Solution, All BC Ultimate ~ |2.037 1
Strength Min Opt Bound i Ultimate, Shear Direction Ultimate ~|4.919 1
59.99481 20.32681 | Yield, Shear Direction Limit ~ | 6.956 1
Buckling Max Opt Bound , Ultimate, Transverse Direction Ultimate = |12.33 1
373.1807 o i Ultimate, Shear Direction Ultimate | 15.01 1
o Yield, Shear Direction Limit - | 15.36 1

Local Buckling

, Yield, Transverse Direction Limit | 17.42 1
06,9863

ear Limit > (203 1
ear Limit > |514.8 1
|'_f|||" pamamaet |D=n=| Eyvirllinn Anmabdiral immnla B~ llniavial ar Biavial Llltirmata w | BIJA
[] Show Advanced [ ] Hide Inactive Data ¥
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GT-ASDL PEGASUIS Madel in RADE: HyperSizer Results

Skin Thickness Stringer Web Height
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GT-ASOL

Minimum Margin ¢

Critical Failure Mode
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PEGASUS Model in RADE: Hyperdizer Results

20.0753

18.06782

14.05286

Category "Buckling, Local”, 49 components Crippling - Buckling Interaction, Johnson-Euler, 16 components
[Category "Buckling, Panel"], 16 components [Crippling, Isotropic, LTV, Formed and Extruded Sections], 1 component
GERL a1t e o Liorepi Srengt, itieae, von Mise#llCrteion, 6 components.
- Fc ength, Ultimate, , 6 component
Cat ‘Material Strength, Isotropic”, 7 eumponentsm satropic Strength, Yicld; Vo Mises-Hil Griterion, 1 cosponent
Local Buckling, Biaxial, 1 component
Local Buckling, Biaxial w/ Shear Interaction, 43 components

ple BC, Uniaxial or Biaxial w/Shear Interaction, 11 components
sverse Shear Flexibility, 1 component

cal Load C:

H




ToOW-STEERED COMPOSITES

Overview
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Ubjectives for TSC Technology Performance Estimation

- Obtain TSC weight reduction performance as a function of Area (Wing

Loading), Aspect Ratio design space to perform systems level trades:
150PAX TBW & 300PAX T&W

— Structural Weight Estimation
— Baseline & Technology Vehicles
— Optimization of Tow-Steering w/in Area/AR Design Space

- Formulate breakdown of sources of uncertainty associated with
Implementation of TSC on production-phase aircraft
- Enumeration of Sources of Uncertainty
— Mapping to Technology Performance Estimation Process

Georgia ‘Jﬁ\ Aerospace Systems
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Approach for Performance Estimation in Planform Design Space

Initial Training DoE
Model Building DoE (TSC)

(Baseline) Model Building

Optimal Dok Structural Weight TSC Weight Group 1
Estimation TSC Weight Group 2

Bayesian
Surrogate Model

Structural Weight

Estimation Update DoE

FRWI1 TSC
TSC Weight Group 1/Baseline Weight Group 1

Adaptive Sampling

FRWI2 TSC

] V TSC Weight Group 2/Baseline Weight Group 1
Baseline Weight Group 1

Baseline Weight Group 2

Optimize
Surrogate

|
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ToOW-STEERED COMPOSITES

Structural Weight Estimation
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Structural Weight Estimation: OML Parameterization
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Structural Weight Estimation: Structural Configuration

S=1700 ft> AR=22
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Structural Weight Estimation: Aercelastic Loads

Static Loads (Vortex Lattice)

» Standalone aerodynamics analysis for low order
Cp, Cy distributions and loads generation

e Used as a camber correction for Nastran
doublet lattice model

Nastran Doublet Lattice Aeroelastic

* Integrated mo
DL with structu

displ

ements transfer

0 connect




Structural Sizing in Hyperdizer

- Currently updating a transonic truss-braced
wing (TTBW) wingpox structural sizing program
to have parametric laminate orientations

— Aeroelastic load analysis with Athena Vortex Lattice
and Nastran

— Solid mechanic analysis with Nastran

— Structural property and failure analysis with
HyperSizer

- Original program used effective laminates, but
in HyperSizer these laminates are restricted to
only use the ply angles 0°, +45°, and 90°

— Skin panels now use discrete laminates that add an
offset to these ply angles

- Original program had weight convergence
iIssues due to bad iteration logic between
material properties and aeroelastic loads

— Alternate iteration strategy has been implemented
and resolves problem

Georgia ‘Jﬁ\ Aerospace Systems
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Structural Sizing in Hyperdizer

Tow Steering Discretization

i
\\
)

Georgia ﬂ\ Aerospace Systems

h || Design Laboratory



“Structural Sizing in Hyperdizer

Tow Steering Discretization

\ — " i
\ o ~
\ — " T
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ToOW-STEERED COMPOSITES

TSC Performance Estimation
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|
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TSC Performance Estimation: Tow-dteering Uptimization

Initial Training DoE
(TSC)

!

Model Building
Optimal Dok Structural Weight TSC Weight Group 1
Estimation TSC Weight Group 2
Bayesian
Surrogate Model
Update DoE
FRWI1 TSC
TSC Weight Group 1/Baseline Weight Group 1
Adaptive Sampling
| FRWI2 TSC
¢ TSC Weight Group 2/Baseline Weight Group 1

Optimize
Surrogate
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Function Value

a0 Performance Estimation: Tow-Steering Uptimization

- 0.20

T
o
[
w

- 0.10

Expected Improvement

- 0.05

- 0.00
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Preliminary Testing for Shape Function Implementation
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Structural Weight

13000

12000 -

15000 -

14000 -

-10

b

0
Rotation Angle

10




Preliminary Testing for Shape Function Implementation

1 Parameter

2 Parameters
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Degrees Relative to Rear Spar

Dptimize T5C for Truss Braced Wing

—— Upper Skin
Lower Skin

Tow Angle Curl (inches™1) Divergence (inches™1)
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Aspect Ratio
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TBW Model Builing Dok for FLOPS Implementation
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Visualization of Surrogate Model Fit: TEW

Structural Weight

Worse performing
points have more
uncertainty due to
sparse sampling
from poor regions

22000 +

21000 A

20000 +

12000 A

18000

Leave-One-Out Prediction

Better performing 170007

points have less
uncertainty dueto ___——" |
increased density of 16000 -

samples in favorable 17000 18000 19000 20000 21000
regions Actual
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TTBW Structural Weight

Straight Tow Wingbox Structural Weight

1700

1650 1

1600 4

1550

Wing Area ft?

1500

1450

1400
16

22

HJ;OW Steered Wingbox Structural Weight

1650

1600
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16

Aspect Ratio
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TTBW TSC-to-Baseline Ratio

FRWI1_TSC (EDS Tuning Parameter) FRWI2_TSC (EDS Tuning Parameter)

0.895 1700 1.004
+0.890 + 1.000
1650
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1600 -
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© ©
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= k=
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1500 -
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1450
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CRM Mode! Building DoF for FLOPS Implementation

Georgia c‘w Aerospace Systems
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CRM Model Building Dok for FLOPS Implementation
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Visualization of Surrogate Model Fit: CRM
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CRM Optimal Tow-Steering
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Divergence (inches™1)
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Weight Reduction Compared to Baseline; CRM
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