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The Windows 95/NT based software package, HyperSizer  is a new and powerful tool
developed to analyze and optimize total structural systems.  But aren’t there other tools
that already do this?  Well, there are other general optimization tools, but it is our belief
that no other tool addresses all of the large and small scale aspects of a structural system
or automates structural optimization as completely as HyperSizer.

This white paper by Collier Research Corporation is not a review of optimization
techniques, but rather a brief contrast between numerical, formal optimization techniques
and the discrete optimization methods implemented in HyperSizer.  After describing the
strengths and shortcomings of formal methods as related to structural optimization, we
describe discrete optimization and what makes HyperSizer ideal for optimizing structural
systems.

Why Optimize?
In today’s engineering environment, structures must first and foremost be designed to
survive their environments.  For many applications, however, such as aerospace vehicles
or shipping containers, minimizing structural weight must also be of primary concern.
The process of minimizing the weight of a structural design while ensuring structural
integrity is called ’structural optimization.’

Optimization techniques are used in many fields of study.  They generally involve the
maximization or minimization of some pre-prescribed function (such as structural
weight) with a set of mathematically specified constraints.  Consider closing a
rectangular plot of land with a given length of fence.  Two variables x and y represent the
length and width of the plot.  A typical optimization problem involving this plot might be
to determine the length and width so as to maximize the area.  The area of the plot, called
the objective function, is given by A=xy.

The optimization problem can be stated as:

Maximize the area of the plot of land, A = xy

The constraint on the problem is:

The total length of fencing, P must not exceed a certain length, Pmax,  or P = 2x+2y  Pmax.

This is a rather simple optimization problem where the answer is obviously a square plot
where x=y=Pmax/4.  Now assume that for some reason, the length of the plot cannot
exceed some maximum value, xmax.  This is an additional constraint, which can be stated
mathematically as x  xmax. Now, the problem is slightly more complicated.  The answer
is still x=y=Pmax/4 as long as xmax is greater than or equal to Pmax/4, otherwise x= xmax and
y= Pmax/2- xmax.  Now consider an additional requirement that the length to width ratio
cannot be less than 2.  Now the problem becomes even more complicated.  While this
problem is simple and easy to solve, it would eventually become nearly impossible to
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solve by hand if constraints or requirements continued to be added.  At this point we
would turn to computational optimization.

Formal Optimization
The most widely used computational optimization schemes use numerical, so-called
formal optimization.  The objective function (or functions) and constraints in a formal
optimization problem are described mathematically and initial guesses for the
optimization variables are made.  The objective function is evaluated and then gradients
of this function with respect to the optimization variables are calculated and used to guide
the variables to a “better” solution.  Each time this procedure is performed, better and
better solutions are obtained until the optimum solution is found.  Because the above
fence problem is well defined mathematically, it lends itself well to formal optimization
methods.

Structural Optimization
Efforts in structural optimization have traditionally focused on mathematically based,
formal optimization methods.   Consider the following problem, which is given as an
example in the MSC/NASTRAN Design Sensitivity and Optimization User's Guide.  A

cantilevered beam with a vertical end load
is to be designed using a rectangular cross
section. The optimization problem is to
minimize the weight of the beam while
limiting vertical deflection and insuring
structural integrity.  In this case, the
objective function is the weight.  The
obvious constraints on the problem are:
1)The stress,  cannot exceed the material

yield stress; and 2) The deflection,  cannot exceed a certain prescribed amount.   What is
not so obvious about this problem is that this beam has a potential torsional buckling
failure mode.  In the design of this beam, an engineering “rule-of-thumb” is typically
used to guard against this type of failure.  For this example, the rule-of-thumb is that the
height-to-width ratio should not exceed 12 to prevent torsional buckling.  For this
problem, the objective function (weight) and constraints ( , , h/w) are easily described
mathematically and the problem lends itself very well to formal optimization techniques
such as those provided in the MSC/NASTRAN Design Sensitivity and Optimization
Module.

Benefits of Formal Optimization
The cantelevered beam example
demonstrates several benefits to using formal
optimization techniques for structural
optimization.  First, virtually any continuous
physical dimension of a problem can be
optimized.  This is true as long as the user
can quantify the impact of each dimension
on possible failure modes.  For example, the
beam in the example problem has a simple
rectangular cross-section, but there is no

Formal Optimization Benefits

• Any continuous variable can be
optimized

• Any mathematically defined objective
function or constraint is allowed

• Techniques to estimate when an
optimized solution is found are part of
the mathematical formulation

• Design variable linking enhances
manufacturability of the optimized
design
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reason that an I-beam or C-beam could not be modeled with different formulations for
stress, deflection and torsional buckling.  Also, once any set of optimization parameters
(i.e. objective function and constraints) are identified, they can be worked into the
optimization.  That is, formal optimization is relatively flexible.   Another benefit is that
their rigorous mathematical formulations include methods that attempt to determine when
optimized solutions are reached.

Another benefit of formal optimization is called design variable linking, which has
actually grown out of one of its weaknesses.  In formal optimization, a few hundred
design variables is considered to be a “large” optimization problem.  But what if a
structure is composed of several hundred discrete components and you wish to optimize
each component for eight or nine different design parameters (such as panel height,
facesheet thickness, etc.)?  This leads to several thousand design variables which is
beyond the practical limits of formal optimization.  Design variable linking solves this
problem by linking design variables to one another, thus reducing the number of
independent variables.  Techniques for design variable linking include using model
symmetry, allowing only linear variations of plate thickness or limiting groups of
structural components to a single design parameter value.  For example, suppose it is
desirable to maintain continuous corrugation spacing from one component to the next.
This variable could be “linked” in such a way that one or maybe a few optimum
corrugation spacings were allowed for the entire structure.  The benefit of design variable
linking is that it will often lead to more practical or more manufacturable designs.

Shortcomings of Formal Optimization
While appropriate for solving certain problems, formal optimization has weaknesses.
First, even in the above simple example, there is a great burden on the analyst/designer to
determine not only the possible failure criteria, but also how they are to be modeled.  The
analyst must be able to see all of the possible failure modes and then somehow come up
with design rules to account for them.  The height to width ratio criteria in the example
could be argued to be too conservative in some situations (resulting in over-design) and
insufficient in others.  Also, if a designer wants to try an I-Beam concept for this
problem, he must have expert knowledge of the new concepts unique failure modes and
generate a completely different set of optimization constraints.

The requirement that the optimization variables be continuous is also restrictive.  What if
the designer wants the software to determine the optimum structural concept (I-Beam vs.
box-beam) or material (steel vs. aluminum)?   Even numeric variables may be hard to
optimize using formal optimization.  Consider trying to optimize a composite ply layup
using formal optimization.  Two optimization variables for a composite layup are the
number of plies and the fiber angle of each ply.  Assuming appropriate objective
functions and constraints are determined, the optimizer might return a solution like 2.42
plies with ply angles of 27.2  and 58.2 .  The resulting 2.42 plies is obviously
unacceptable, as it makes no physical sense.  Is it appropriate then to use 2 plies or 3?
The resulting ply angles could be reasonable, but manufacturing constraints would
usually limit the fiber angles to more round numbers like 30 , 45  or 60 .  Which of these
angles is appropriate?   Having to answer questions like this makes automatic
optimization very difficult.
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Formal optimizers also have the inherent
problem of returning local optima.
According to optimization theory, the
gradients that are calculated and used by
the optimizer approach zero in the
vicinity of the optimum solution.
However, the gradients can also approach
zero for non-optimum solutions.  These
“false” solutions are called “local

optimum” solutions.  It is not easy for a formal optimization scheme to automatically
determine if a local optimum has been found.

Finally, formal optimization techniques are computationally intensive.  Small problems
like those described above are trivial, but what about designing an entire airframe?  For
large optimization problems, individual panel level details (like local buckling criteria)
must be ignored in favor of simpler strength analyses.  In addition, design variable
linking must be used to reduce the number of variables to a manageable level.  Although
listed as a benefit above, design variable linking can be restrictive if the user wishes all
components to be optimized independently.  Even when simplifying assumptions are
made and the number of variables is reduced; there is an exponential relationship
between the number of independent degrees of freedom (i.e. model size and number of
design variables) and the amount of CPU time and memory required for optimization.
Problem size is therefore limited and very large problems become unsolvable.

Discrete Optimization

While formal optimization techniques are valuable for certain problems, automatic
optimization of a total structural system requires a different approach.  Discrete
optimization is one approach that aids in automating the optimization procedure.  With
this approach, a system could be reduced to discrete panels and beams with many
permutations on the panel and beam concepts generated based on user-defined
optimization bounds (such as minimum and maximum gage thickness).  After filtering
out impractical or impossible designs, each concept is evaluated for all possible failure
modes using an extensive list of physics based, closed form analyses.  The lightest of the
solutions that pass all structural integrity checks is the optimum design.

Benefits of Discrete Optimization
Discrete optimization is able to address a
number of the concerns raised for formal
optimization.   First, there is no
requirement for the designer to
determine appropriate failure criteria.
This means that the designer/analyst has
no need to determine applicable rules-
of-thumb to account for structural failure
modes.  The discrete optimization
implemented in HyperSizer checks all

Formal Optimization Shortcomings

• Modeler must determine failure criteria
and analysis method

• Only continuous, numeric optimization
variables can be used

• Occurrence of local or false optima

• Number of degrees of freedom /
optimization variables are limited

Discrete Optimization Benefits
(as implemented in HyperSizer)

• Designer not required to determine failure
criteria

• Can handle non-numeric optimization
variables like material or structural concept

• Can handle discrete optimization variables
such as number of plies

• No occurrence of local or false optima

• Efficient; No limitation on problem size
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Discrete Optimization Shortcomings

• No way to quantify whether an optimized
solution has been reached

• Actual optimum solutions of continuous
variables can occur between discrete values

• Design variable linking is not implemented

possible failure modes for every panel and beam concept by default.  The process
HyperSizer uses is similar to what an analyst would normally have to do manually.  First,
the structure is analyzed using Finite Element Analysis (FEA) and then a series of closed
form analyses is performed to predict failure modes such as panel local buckling,
crippling or ply-by-ply material strength.  The difference is that the closed form solutions
are performed automatically for every failure mode, every concept, and every location on
the structure.

Another benefit of discrete optimization is that any physical or manufacturing constraint
can theoretically be optimized in a design.  Parameters such as panel or beam concept can
easily be optimized. The method can also optimize material selection.  Even further,
individual properties of a material, such as temper or manufacturing technique can be
addressed.  With discrete optimization, virtually any combination of material or concept
is possible.  The only limitations are the imagination of the software developers to give
the users variables to play with and efficiently written code to evaluate all possible
combinations in a reasonable amount of time.

In addition to being able to optimize non-numerical quantities such as material selection,
discrete optimization is also better able to optimize for discrete parameters such as the
number of plies in a composite layup.  The designer/analyst has the ability to specify
acceptable layups, both in number of plies and fiber angle.  Therefore, the optimizer
would never return a result such as 2.42 plies because this was not specified up front as
an acceptable design.  This would also mean that the optimizer would not return
impractical solutions, such as fiber angles of 27.2  and 58.2  because those solutions
would have been disallowed before the optimization took place.

Discrete optimization has no problems associated with local optima.  The user can be
assured that the solution returned by the optimization procedure is the absolute minimum
weight structure given the optimization bounds and permutations selected.  Discrete
optimization is also much less computationally intensive than formal optimization.  There
is no exponential relationship between model size and CPU time.  Entire structural
systems can be designed and analyzed on an Intel based, Windows NT workstation.

Shortcomings of Discrete Optimization
Of course, no method is perfect, and discrete optimization also has weaknesses.  First,
having no rigorous mathematical formulation, it is rather difficult to quantify whether an
actual optimum solution has been found.  In other words, while the lowest weight
solution given a set of optimization bounds will be returned, there is no way of
ascertaining that there are not lower weight solutions outside of those bounds.  Of course,
while formal optimizers have mathematical criteria for determining whether an optimum
has been reached, those methods can still return local optima.  Second, variables,
including those that are continuous, are
treated as if they were discrete.  This
means that the optimum value of a
continuous variable can actually lie
between two discrete values.  If the user
desires that continuous property values be
closer to optimum, the optimization
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bounds must be refined. HyperSizer allows a user to very easily refine optimization
bounds for continuous variables.  Due to the continuous nature of the design variables
(i.e. x and y), discrete optimization may not be the best choice to solve the fence problem
from the first section.

Another shortcoming of discrete optimization is the absence of design variable linking.
Remember that design variable linking originally came about because of the need in
formal optimization to reduce the number of independent variables.  Discrete
optimization as implemented in HyperSizer has no such limitation.  To enhance the
manufacturability of optimized designs, the linking of certain design variables would be
useful.  For example, if a user wished to maintain component to component continuity of
stiffened panel corrugation spacing, automatic design variable linking would be very
helpful.

HyperSizer and the Future
The methods discussed in the discrete optimization section are implemented in the
structural analysis and optimization package called HyperSizer.   Building on over 10
years of research at the NASA Langley Research Center, HyperSizer is able to
automatically optimize total structural systems and provide structural designers and
analysts with a powerful, user-friendly tool which will dramatically increase productivity.

At Collier Research Corporation, we believe HyperSizer to be an extremely powerful tool
but we also recognize that it has weaknesses.  We have a full-time development team
addressing these issues and working to improve the technology and the interface.  In the
very near future, HyperSizer will include the capability to automatically refine
optimization variables to improve the optimization of continuous variables.  For example,
the optimization bounds on a continuous variable like facesheet thickness may start out as
0.5" to 2.75".  A statistical distribution of optimum solutions might identify a refined
optimization range of 1.25" to 1.75", which would in turn be used as bounds for a new
discrete optimization.  By automating this procedure, continuous variables (e.g. the
length and width of the fence problem) could effectively be optimized using discrete
optimization with a minimum of user interaction.  In addition, an automated variable
refinement scheme could include convergence criteria that allow the user to determine
when an optimized solution has been achieved.  The development of discrete design
variable linking is also under way.  Similar to the continuous design variable linking in
formal optimization, this capability will allow a designer to automatically enhance the
manufacturability of an optimized design by ensuring continuity of certain variables
between discrete components.

One day soon, we believe that automated structural ‘Sizing’ (i.e. HyperSizing) will
become an industry standard in structural design.  Its efficiency and ability to run on a
relatively inexpensive Windows NT workstation will allow every designer and analyst to
perform detailed structural design from their desktops.
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HyperSizer provides the next logical step in structural design automation in the
progression:

As automated sizing becomes less a convenience and more of a necessity, HyperSizer
will be leading the way.

Design Drawing
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FEM/FEA
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