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ABSTRACT 

 
This paper presents a probabilistic optimization 
methodology for conceptual design of aerospace 
vehicles that takes into account linkages between global 
and local design requirements. Multiple disciplinary 
analyses such as geometry, weights, structures, 
aerodynamics, trajectory, propulsion, thermal 
protection, operations and maintainability etc. are 
involved in the overall conceptual design. The global 
design considered in this paper optimizes the geometry 
for minimum weight while satisfying aerodynamic 
constraints. The local design illustrated here relates to 
structural sizing of vehicle components, e.g., liquid 
hydrogen tank. The optimization formulation includes 
probabilistic constraints, which are evaluated using the 
limit state-based reliability analysis methodology. The 
global and local designs are linked through probabilistic 
data flow relating to vehicle geometry and component 
weight, and the optimization at both levels is achieved 
through an iterative process. 

 
INTRODUCTION 

 
Design of an aerospace vehicle is a complex process 
requiring analysis and optimization across multiple 
disciplines.  In many cases, relatively mature (high and 
low fidelity) disciplinary analysis tools are available.  
These disciplinary analyses cannot be taken in isolation 
since they are coupled to one another through shared 
input and output. Furthermore, system design objectives 
and constraints may span several disciplines.   Thus, a 
design process needs to address issues relating to the 
coupled multidisciplinary system.  Integrating 
disciplinary analyses into a multidisciplinary 
framework and finding practical ways to solve system 
optimization problems is a serious challenge.    

 
Aerospace vehicle design optimization to date has been 
based by and large on a deterministic approach. Input 
variables are assumed to be non-varying and the system 
is assumed to behave exactly as an analysis model 
predicts.  In this case, the analysis output will be 
deterministic, and there will not be any uncertainty-
based metric for assessing risk.  A probabilistic 
approach, on the other hand, allows for random 
variation in the input variables and can also consider 
the error between model predictions and true system 
behavior.  In this case, the output will also have random 
variation.  This random variation is characterized by a 
probability distribution function (PDF) defined by its 
shape and a set of distribution parameters (e.g. mean 
and standard deviation).  Risk objectives can then be 
defined in terms of this output uncertainty1. A 
probabilistic optimization will then characterize 
uncertain objectives and constraints in terms of 
probability distribution parameters and statistics (e.g. 
minimize µZ subject to P (x1 < x < x2) ≤ pf, where µz is 
the mean of output z and pf is some acceptable 
probability of failure for x to be in the interval [x1 , x2]). 

In this paper, probabilistic optimization methods are 
demonstrated for the design of an aerospace vehicle at 
two levels: a global geometry design and a component 
structural sizing application.  The global geometry 
application is inter-disciplinary in that it considers a 
coupled analysis of geometry, weights, and 
aerodynamic disciplines.  It is also a system-level 
design in terms of physical architecture, in that the 
geometry design variables define the global 
characteristics (length, radius, wing areas, etc.) of a 
vehicle comprised of many component parts (wings, 
fuel tanks, engines, etc.).   The component sizing 
application involves a single disciplinary analysis, at 
the component level (in terms of physical architecture), 
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analyzed in terms of multiple limit states.  As these two 
design processes are intrinsically linked, this paper also 
examines the iterative coupling process from the global 
to local design and vice versa given uncertainties in 
system parameters. 

GLOBAL GEOMETRY DESIGN 
 
As a first effort in the RLV multi-disciplinary design 
analysis, low fidelity second-order response surface 
models have been developed for a deterministic sizing 
analysis of a wing-body, single stage-to-orbit vehicle2.   
For this application, a launch vehicle is sized to deliver 
25,000 lb in payload from the Kennedy Space Center to 
the International Space Station.   The vehicle geometry, 
for illustration purposes, is shown in Fig. 1, and has a 
slender, round fuselage and a clipped delta wing.  
Elevons provide aerodynamic and pitch control.  
Vertical tip fins provide directional control and body 
flaps provide additional pitch control.   

 
Figure 1: Illustrative Vehicle Geometry Concept 

 
As a first step in the conceptual design, two disciplines 
(weights/sizing, and aerodynamics) are considered in a 
constrained optimization problem.   A vehicle geometry 
that minimizes mean dry weight is expected to 
minimize overall cost, so this is chosen as the objective 
function.  For stability, the pitching moment (Cm) for 
the vehicle should be zero or extremely close to zero.  
In addition, Cm should decrease as the angle of attack 
increases.  This is achieved by adjusting the control 
surfaces trim the vehicle as the angle of attack is 
increased.  Thus the aerodynamic analysis for pitching 
moment constrains the optimization.    

The optimal vehicle design is determined by six design 
variables:  fineness ratio (fuselage length / radius), wing 
area ratio (wing area  / radius2), tip fin area ratio (tip fin 
area / radius2), body flap area ratio (body flap area / 
radius2), ballast weight fraction (ballast weight/ vehicle 
weight), and mass ratio (gross lift-off weight/ burnout 
weight).   For the aerodynamic part of the analysis, 
three additional variables are required to describe the 
adjustment of control surfaces in order to trim the 

vehicle: angle of attack, elevon deflection, and body 
flap deflection.   The pitching moment constraint must 
hold during all flight conditions; nine flight scenarios 
(constructed with three velocity levels and three angles 
of attack) are used as a representative sample.  The 
representative velocities (Mach 0.3, Mach 2, and Mach 
10) were selected as those originally used in Unal, et al2 
for which response surfaces have already been 
generated.  The deterministic optimization problem 
may then be written as follows: Minimize vehicle dry 
weight (W) such that the pitching moment coefficient 
(Cm) for each of 9 scenarios is within acceptable 
bounds [-0.01,+0.01]. This is a multidisciplinary 
problem requiring the synthesis of information from 
three analysis codes:  a geometry-scaling algorithm, a 
weights and sizing code (e.g., CONSIZ) and an 
aerodynamic code (e.g., APAS). 

The problem is reformulated in probabilistic terms as 
follows: Minimize mean weight such that the pitching 
moment coefficient for all 9 scenarios has a low 
probability (less than 0.1) of failing to be within the 
acceptable bounds [-0.01, +0.01].  Note here that the 
output parameters (weight W, and pitching moment Cm) 
are random variables.  They cannot be known exactly 
since the inputs and analysis model, on which they are 
based, are subject to uncertainty.   Therefore 
minimizing the mean weight approximates the weight 
minimization, and the pitching moment constraint is 
estimated as a probability of failure to be within 
acceptable bounds.  The solution of this revised, 
probabilistic problem requires characterization of 
system uncertainties, defining the limit states for 
failure, probabilistic analysis, and finally optimization. 

System uncertainty comes from various sources and 
may be modeled through probability density functions 
for input parameters that are treated as random 
variables.  For example, for the design parameters 
mentioned above, the as-built conditions may not 
exactly the same as the design specifications made at 
this early conceptual level.  Furthermore, uncertainties 
in operational performance lead to randomness in the 
control variables.  In addition, a model error variable is 
introduced to capture the uncertainty in the analysis 
itself.  In this paper, it is considered simply as an 
additional random variable applied to the predicted 
pitching moment as a percentage.  Thus, the output 
pitching moment coefficient is  

Cm = Cm(pred)*(1+error) 

where Cm(pred) is the pitching moment predicted from 
the response surfaces.  In this application, each input 
variable is assumed to have normal distributions, a 
simplifying assumption to facilitate analysis.  However, 
any other distribution can be easily included within the 
probabilistic framework used here.  Model error 
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coefficient is assumed to have a mean of 0 and a 
standard deviation of 0.1.   The mean values (µ) of the 
other variables are design variables and change during 
the optimization iterations.  Their standard deviations 
(σ) are assumed, for the sake of illustration, to be either 
one third the range of possible values (based on expert 
opinion), or estimated from an assumed coefficient of 
variation (δ) where σ = δ * µ..    

The constraints formulated above in probabilistic terms 
may be evaluated using limit state-based reliability 
analysis. A limit state defines the boundary between 
success and failure in satisfying a constraint.  In this 
problem, each of the 9 scenarios has two limit states, 
one for the lower bound and one for the upper bound of 
Cm (pitching moment coefficient).  The lower bound 
limit state is  

glower =  0.01+ Cm,                                                            
 
and the upper bound limit state is  

gupper = 0.01 – Cm 
 
The probability of failure is defined as  

 
Pf  = P(Cm < -0.01) + P(Cm > 0.01)  

= P(glower < 0 ) + P(gupper < 0) 
 

The probability of failure for each limit state is the 
volume integral under the joint probability density 
function of all the input variables over the failure region 
(i.e. where g < 0) as shown in Figure 2.   A first order 
reliability method or FORM3, 4 is used to approximate 
this integral.  Finally, a gradient-based non-linear 
optimizer is used to find the minimal mean weight 
given the probabilistic pitching moment constraints. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Limit State and Probability of Failure 

 

Using the probabilistic optimization process described 
above, solving the following formulation: 

 

 Minimize mean empty weight 

Subject to 10%  0.01)   01.0( ≤≤≤− imCP  

finds the best acceptable geometry, yielding an optimal 
mean empty weight for the vehicle (213,300 lb in this 
case).  

LAUNCH VEHICLE GLOBAL–LOCAL 
COUPLING 

 
A launch vehicle is comprised of many components 
(Fig. 3). Each component must be designed to 
successfully perform its individual function, but must 
also integrate or ‘fit’ into the system as a whole.  
Consider the component design of the liquid hydrogen 
(LH2) fuel tank for the sake of illustration. The design 
parameters of the tank include the shape, dimensions, 
and location of the tank as well as the material make-up 
of the tank walls.  The primary operational requirement 
for the tank is that it must be large enough to hold the 
fuel necessary to complete the mission of the vehicle.  
At the same time, the tank must not occupy the same 
space as other components and must be strong enough 
to resist loading induced by the entire vehicle.  The 
global system design drives both the fuel requirements 
(a function of the shape and weight of the vehicle) and 
the induced loading (a function of the weight 
distribution of the vehicle). 

Of the three elements of tank design (location, shape, 
and wall material), this analysis focuses on the tank 
wall material.  Trade studies have been conducted 
addressing optimal shapes and positioning for fuel 
tanks in the X-33 lifting body configuration5.  However, 
stability considerations for the more basic slender body 
concept dictate that the two fuel tanks (liquid oxygen 
and LH2), which comprise the bulk of the weight of the 
loaded vehicle, be at either end of the launch vehicle.  
In addition, the slender body vehicle concept lends 
itself to cylindrical tank geometry so that only the 
tank’s length and radius are needed.     Furthermore, the 
volume is obviously dictated by fuel requirements, and 
the tank radius is limited by the RLV geometry, both of 
which are products of the global design.   For the scope 
of the following analysis, the LH2 tank is assumed to be 
a typical cylindrical tank with given end eccentricity, 
located at a fixed distance from the end of the vehicle.  
With tank geometry and location driven by 
requirements, the final considerations for design are the 
material and structure of the tank walls.  In this respect, 
the tank should be sized such that it is as light as 
possible but strong enough to resist stresses induced by 
inertial loads.   
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Figure 3:  Launch Vehicle Components 

LOCAL TANK DESIGN 

The design goal for the liquid hydrogen tank is to 
minimize the weight of the tank while meeting the 
requirements for fuel capacity and structural integrity.  
The fuel capacity requirement is maintained by 
choosing the appropriate tank geometry.   With tank 
geometry dictated by the global design, an optimization 
problem may be formulated to select the best design for 
the tank wall structure: 

 
Minimize Tank Weight = f(R) 

Subject to 

0<− SR or 0  1 - ≤
S
R {for all failure modes} 

 
where R is the tank resistance and S is the loading on 
the tank.  The problem is re-formulated to consider 
uncertainties in R and S: 

 
Minimize ( ) )()( RR Rf µµ ff   weighttank ≈=  

Subject to 

required
modes failure all

  PSRP <







−U  

This optimization formulation recognizes that the 
objective (tank weight) and constraints (failure limit 
states) are random variables.  For well-defined 
optimization, objectives and constraints need to be 
selected from among the parameters that characterize 
the random distributions of these variables.   In this 
case, the parameter mean tank weight is selected as the 
objective, and the probability of system failure is 
chosen as the constraint.    

For isotropic panel concepts (such as a simple thin-
walled tank), tank weight and resistance are perfectly 
correlated so that the design variable, Rµ , may replace 
the objective function.  In this case, the reliability 
constraint is active and the designer may simply solve 

for Rµ  to satisfy required
modes failure all

  PSRP =







−U .    

However, since weight is of paramount importance, an 
isotropic, thin-walled tank is not the ideal design.  
Instead more complex concepts such as honeycomb 
sandwiches and blade-stiffened panels are considered 
more appropriate.  In addition, an efficient wall design 
would have varying resistance properties according to 
the loading profile.  This requires a more sophisticated 
approach for estimating tank resistance properties and 
analyzing failure modes.   The material management 
and structural sizing software, Hypersizer™, is useful 
for this purpose6. There are multiple modes of failure 
for the tank (i.e. Von Mises interaction failure, isotropic 
failure, panel buckling), multiple locations along the 
tank that could fail, and even multiple load cases (at 
various stages in the vehicle trajectory) that could cause 
failure.   Each of these failure cases may be represented 
by a corresponding limit state.  However, the overall 
reliability measure for the tank is the system failure 
probability, which synthesizes all of these modes.  

Thus, evaluating  
modes failure all









−U SRP involves five 

subtasks: (1) defining an analytical model for the 
system loading, S, based on information from the global 
analysis and the mission profile,  (2) defining analytical 
models for various failure modes that incorporate the 
loading model and resistance, R, in terms of design 
variables (3) quantifying the uncertainty in the inputs to 
the failure model, (4) using probabilistic methods to 
evaluate the failure probability of the individual limit 
states, and (5) using system probability methods to 
estimate the union of several limit states. 

For the first subtask, system load calculations are based 
on a simple beam model as depicted in Fig. 4, for the 
sake of illustration.  (The analysis calculates running 
loads, Nx, Ny, and Nxy, nominally stress divided by 
thickness.)  The model accounts for component weights 
as uniform distributed loads under axial and normal 
accelerations.  In addition, fuel tanks experience ullage 
and head pressures.  Reaction point locations (R1 and 
R2) represent lift, drag, wheel reactions, and/or the 
launching structure reactions depending on the mission 
stage (i.e. lift-off, ascent, landing, etc.).   

 

 

 

 

 

 

Figure 4: Simple Beam Model for RLV Loading 
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For the second subtask, there are multiple failure 
criteria (e.g., strength, panel buckling, etc.) that mau be 
used to predict structural failure, and infinite locations 
on the component that may fail.   Each of these cases is 
associated with a failure limit state.  In addition, since 
loading varies with the flight profile, there are an 
infinite number of failure limit states associated with 
flight conditions.  System failure occurs if any part of 
the tank fails at any time during the mission based on 
any of the failure modes.   Thus system failure may be 
modeled as a series or union of an infinite number of 
limit states.  Obviously, only a finite number of failure 
limit states can be analyzed; this can be achieved by 
dividing the continuous spaces (e.g. tank location, flight 
profile) into finite regions. This concept is 
demonstrated in the following section through a multi-
mode failure model of the system. This model 
synthesizes three failure modes (i.e. failure according to 
three different criteria) for a honeycomb sandwich wall 
tank.   The three limit states (corresponding to three 
failure modes) are chosen for the sake of 
demonstration.    Additional limit states would need to 
be considered in practice, adding computational 
expense without changing the basic methodology. 

In this example, a segmented tank is considered.  It is 
divided into 10 panels along the length and 4 panels 
along the circumference (Fig. 5).  Since the maximum 
load varies from panel to panel, they need not be 
identically designed.  Loading on the panels is obtained 
from the simple beam model.  In the analysis that 
follows, the side panel located close to the rear of the 
RLV is designed.  Hypersizer™ includes a database of 
properties for a number of isotropic and composite 
materials, and it is able to consider several panel 
concepts.  This demonstration utilizes a honeycomb 
sandwich concept consisting of top and bottom plates of 

Aluminum, AL2024 and Hexcell 1/8”-5052-.0015 for 
the sandwich material.   

Design of the panels must specify the thickness of the 
plates and sandwich.  Given the panel properties and 
applied loads, Hypersizer™ then evaluates the margins 
of safety for a number of failure criteria.  For the tank 
walls, the significant failure modes are: isotropic 
strength in the transverse direction, Von Mises strength, 
and honeycomb buckling.  To facilitate probabilistic 
optimization, response surfaces for three failure modes 
(Von Mises, isotropic strength, and honeycomb 
buckling) were developed from a design of 
Hypersizer™ experiments.   (Equations for Von Mises 
and isotropic strength failure are known, so that the 
Hypersizer™ analysis is only needed to verify the 
effective yield stress for the panel material.)   

Figure 5:  Segmented Honeycomb-Wall Tank 

The next subtask is to model system uncertainty.  As 
seen in the structural analysis, the system loading is a 
function of several variables.  The system resistance 
variable(s) constitute the design variable(s).  For the 
segmented tank, the honeycomb thickness (thc) is an 
additional resistance variable, and plate thickness (tplate) 
is the design variable.   All of these have a degree of 
uncertainty that affect the uncertainty of the calculated 
running loads.    However, variables with an 
insignificant affect on the output variability are 
assumed to be deterministic (i.e. constant).  The 
variables are summarized in Table 1 below: 

 
Table 1: Input Variables 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameter Distribution Origin Mean Cov Description
x1 R1 Lognormal mission 350 0.1 Location of first reaction point
x2 R2 normal mission 2000 0.1 Location of second reaction point
x3 %_fuel normal mission 0.9 0.1 Percent of fuel remaining in tank
x4 ax normal mission 1 0.1 axial acceleration
x5 ay normal mission 1 0.1 normal acceleration
x6 mixratio normal mission 0.2 0.1 ratio of lox weight to lh2 weight
x7 radius normal global 377.4 0.0035 RLV & tank radius
x8 fuel wt normal global 2020000 0.0095 total fuel weight (lh2 and lox)
x9 N yield normal local design var 0.1 yield load of tank structure

t plate normal local design var 0.1 top and bottom plate thickness
t hc normal local 0.1 0.1 honeycomb sandwich thickness

c1 oal deterministic global 2340 overall length
c2 wstruct deterministic global 109800 distributed load along entire RLV
c3 wwing deterministic global 21950 distributed load along wing
c4 wengine deterministic global 87810 distributed load along engine

Variables for Structural Tank Design
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The first 6 variables in Table 1 are determined by the 
mission profile for the launch vehicle.  They will vary 
along the flight trajectory.    The global variables are 
obtained from a Monte Carlo analysis of the RLV 
global design response surfaces as summarized below: 
x7:  Radius = Fuselage Fineness Ratio * overall length 
(oal) 
Fuselage fineness (fr) is an optimization variable for the 
global design.  Response surfaces for overall length (c1: 
oal) were available from the weights design of 
experiments discussed previously. 
x8: Fuel Weight = Gross lift-off weight – empty weight 

– cargo weight 
 

Response surfaces for gross lift-off weight and empty 
weight come from the weights design of experiments.  
The cargo weight is 25,000 lb as given by mission 
requirements.  Unfortunately, the response surfaces do 
not give enough detail on component weights to 
develop the weight distribution needed for the tank 
structural analysis.  Instead, the parametric estimates 
below were based on the weight distributions for the 
structure, wing, and engine of legacy vehicles.   As 
components are designed in detail, this information may 
be updated to refine the structural analysis. 

c2: Wstructure = 0.5 * empty weight 
c3: Wwing = 0.1 * empty weight 

   c4: Wengine= 0.4* empty weight  
  

For the segmented, honeycomb panel tank, a two part 
probabilistic analysis accomplishes the fourth subtask 
in evaluating the probability of structural failure.  First, 
ten thousand Monte Carlo runs were performed (by 
varying the input variables from Table 1) on the simple 
beam loading analysis to find the mean and standard 
deviations of the running loads (Nx, Ny, and Nxy).  The 
Kolmogorov-Smirnov test was conducted to assess 
conformity to a normal distribution type1.  All panel 
loads followed a normal distribution within a 10% 
significance level, and most were within 5% 
significance.   FORM was performed (as the second 
part of the analysis) on the response surfaces of select 
panels considering Nx, Ny, and Nxy as random variables.  
The plate thickness and honeycomb thickness were also 
considered as random design variables.   

For the fifth subtask, three failure modes (for a single 
panel) are considered in series to assess a system failure 
probability. They are honeycomb buckling, strength 
failure (Von Mises), and the transverse isotropic 
strength.  (These three limit states are chosen for 

demonstration purposes, but it should be noted that the 
true system failure probability is a function of not only 
multiple failure modes but also multiple failure 
locations and failure under multiple loading 
conditions).  

Several methods are available for approximating the 
union or intersection of several events.  These include 
methods developed by Ditlevsen7, Hohenbichler and 
Rackwitz8, Gollwitzer and Rackwitz9, Madsen et al10 
and Xiao and Mahadevan11. In this case, the 
Hohenbichler approximation8 is used.  This method 
uses the reliability indices, β, from the individual limit 
states and a correlation matrix, ρ.  The correlation 
matrix is defined as: jiij ααρ •= , where 

ji αα  and are the direction cosine vectors such 

that
ig
ig

∇
∇

=i α .  The Hohenbichler methodology will 

not be explained in detail here.  However, the basic 
premise is to use an orthogonalization procedure to 
transform a set of limit states to a set of statistically 
independent limit states.  Then, the probability of 
failure calculation is simply: 

 
 ,)(*)(*)(** *

3
*

1
*
3

*
1 22

βββ ΦΦΦ≈= fffs PPPP
f

 

 
where *

3
*
2  and ββ  are the reliability indices for the 

transformed (i.e. statistically independent) limit states.  
The problem statement may now be refined as 

stated below:  
Minimize 

platetµ  

Subject to 
{ } acceptableHCBIsoVMfs PgggPP ≤<<<= )0(  )0(  )0( UU

 
(for 3-mode failure of a single segmented honeycomb 
panel).  As with the global design problem, the 
optimization was performed using a gradient based 
non-linear optimizer. The optimal plate thickness is 
plotted against the acceptable system failure 
probabilities in Figure 6. In addition, the relative 
contribution of each of the limit states is depicted in 
Figure 7.  It can be seen from this graph that the 
strength (Von Mises) and isotropic failure modes 
dominate the design requirements for this panel. 
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Figure 6: Optimal Plate Thickness 
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Figure 7: Probability of Failure for Individual Limit States 

 

LOCAL-GLOBAL FEEDBACK 

 

Just as the local analysis is affected by the global 
design, the global analysis is impacted by the 
refinement of local design.    In this case, the local 
optimization of the liquid hydrogen tank refines or 
updates the weight estimation relationships for the 

vehicle.  The weight estimates from the low-fidelity 
global analysis are now replaced by detailed component 
information after the latter are designed for structural 
reliability.   This new information needs to be re-
analyzed in the context of the global multidisciplinary 
design, which in turn updates information at the local 
level.  This process of passing information between 
global and local levels continues until acceptable 
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convergence is reached.  This happens with increasing 
levels of fidelity in effect spiraling between analyses 
from a conceptual to detailed design. 

After the local tank sizing analysis is performed, tank 
weight may be easily assessed.  The original global 
design was based on the sizing program (CONSIZ) 
using parametric estimates for various component 
weights based on historical information.    However, the 
tank weight at the global design point (i.e. the mean 
values of the global geometry design parameters), gave 
a predicted tank weight (16,400 lb) that was 
significantly lower than given by the local tank sizing 
optimization based on structural reliability  (21,300 lb).  
Therefore the global weight estimating relationship is 
updated to be compatible with the local design.  Given 
this, a new design of experiments is performed to 
update the global response surfaces for the vehicle 
weight and pitching moment.   The global optimization 
is then performed a second time, giving a new optimal 
vehicle empty weight of 223,100 lb (up from 213,300 
lb obtained previously).  These changes in the global 
design will affect the local sizing optimization in the 
same manner previously described.  Of course the 
global design would also be affected by the local design 
of other components.  Thus the effects of multiple 
components on each other may be transferred through 
the global design, and the final design at both global 
and local levels obtained through convergence at the 
end of an iterative process. 

 
CONCLUSIONS 

 
This paper has presented and applied a methodology for 
probabilistic multidisciplinary optimization for 
aerospace vehicle design.  The combination of response 
surfaces and first order reliability analysis provides a 
valuable tool for both global conceptual design and 
low-fidelity component design.  In addition, the 
coupled nature of these analyses causes the flow of 
probabilistic design information from a global, multi-
disciplinary analysis to a local, single discipline 
analysis.  Geometric variables (fuselage fineness, 
overall length), established through the global design 
and outputs from the global weight response surfaces 
were used to determine the vehicle loading distribution 
for the local tank sizing analysis.   The tank weight 
established from the local analysis is then used to 
update the global weight estimating relationships, 
allowing the global design to be refined or updated.  
This process of passing information between global and 
local levels continues, involving additional component 
analyses until acceptable convergence is reached and 
appropriate design confidence is established. 

In addition to the global to local coupling, this tank 
sizing application demonstrates a probabilistic 

optimization formulation for system failure of multiple 
limit states.  For a fuel tank, structural failure may be 
caused by many possible failure modes, several 
locations, and a load history that varies according to the 
stage of flight.  In this analysis, only three modes are 
considered for demonstration.  In reality, a large 
number of failure limit states are applicable.   Then, a 
technique such as branch and bound enumeration12 may 
be appropriate to identify the failure modes of most 
significance before system reliability methods are 
applied.  
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