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Overview 
The commercial HyperSizer® software performs structural analysis and sizing optimization.  It 
can be operated interactive or in batch mode on a single workstation. A parallel capability that 
executes and controls the entire process over multiple computers has recently been implemented. 
In either use case, the process begins by identifying parts of a finite element model into 
manufacturing sized pieces called structural components. When sizing a structure, these 
components are collected together into organizational units called optimization groups.  A 
feature of the sizing process is that groups can be executed independently, lending itself well to 
parallelization. This document describes the design and implementation of the HyperSizer 
parallelization approach. 
 
HyperSizer was parallelized such that each group, or sets of groups, can be sent to different 
processors, with the ultimate goal of reducing the clock run-time of the HyperSizer analysis.  
The parallel version of HyperSizer has the following features: 
 
• Only one HyperSizer parallel server license is required to execute HyperSizer on as many 

computers and processors as desired. 
• The individual computers on the network, rather than the central controlling computer 

perform the majority of HyperSizer I/O and numerical processing so that for long running 
processes, a high parallel to serial computing ratio can be achieved. 

• The network traffic is minimized between computers by allowing each workstation to 
perform its own disk I/O.  This means the HyperSizer parallel process running over a 
network of computers does not bog down the network.   

• Database import and management of temporary files is done automatically and is transparent 
to the HyperSizer user. All of the computed results are automatically imported into the 
database of the controlling computer. 

• The HyperSizer process runs on each computer as a “low-priority” task, so that workstations 
running part of the HyperSizer parallel process can be used for other applications with very 
little impact to a workstation interactive user. 

• The user can dictate the workstations on the local network on which to execute HyperSizer, 
can determine the relative performance of each (e.g. CPU clock speed, available memory), 
and tests each computer to ensure that HyperSizer is properly installed before attempting to 
submit a run. 

• HyperSizer groups can be divided among processors on one multi-processor computer or can 
take advantage of processors on a network of computers.  The number of processors 
available and the relative performance of each processor determine the division of groups. 

 
An example running parallel on six processors 
As a test problem, the HyperSizer parallel capability was applied to a candidate 3rd Gen RLV 
design.  Using six single processor computers networked together, we were able to obtain a 
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speedup of 5.08 over traditional HyperSizer.  The networked computers each have different 
processor speeds as well as differences in memory, hard drive space, and installed software.  The 
results are shown in Figure 1.  By taking into account the total processing power available on the 
network, a minimum processing time (if the parallelization of the problem was perfect) of 7.47 
minutes was calculated.  The actual time that it took to complete the problem was 8.82 minutes.  
By multiplying the theoretical minimum process time (7.47 minutes) by the theoretical perfect 
speedup factor of 6, a composite average process time of 44.8 minutes was obtained.  Finally, the 
average time that it took each processor to complete the job as a standalone serial process was 
calculated to be 50.72 minutes.  Additional details from this example are in the “Example Setup 
and Results” section below. 

 
Implementation 
The creation of the HyperSizer Object model has presented an opportunity for a great deal of 
automation of the HyperSizer structural sizing process.  For example by instantiating HyperSizer 
objects, a user can start HyperSizer, create and size components, groups, assemblies and projects, 
and retrieve results.  In addition, because 
the HyperSizer Object Model is built with 
Microsoft’s COM and ActiveX, it can be 
access remotely with very little effort by 
the end user with the Microsoft Windows 
built-in remote processing facility called 
DCOM (Distributed Component Object 
Model). 
 
The HyperSizer parallel capability uses 
DCOM to remotely create HyperSizer 

Note:  Because HyperSizer Parallel works 
identically for multiple networked computers 
and for single multi-processor computers, 
the terms processor, computer, workstation 
and machine are used interchangeably in 
this document.  In addition, “remote” refers 
to any processes other than the central 
controlling process and could refer to a 
process on the same computer as the 
controlling process. 

Figure 1:  HyperSizer Parallel Processing Results;  
6 computers used, speedup factor: 5.08 
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Object Model Processes on each networked computer, and then monitor these processes to 
determine when the overall sizing is complete.  This could be done almost exclusively using the 
object model on each computer, however, some minor modifications were made to the process to 
prevent database conflicts where multiple computers were accessing tables within a single 
HyperSizer database simultaneously. 
 
To avoid these database import and export collisions, the HyperSizer parallel process was broken 
into three phases.   
 
Phase One:  Initialization 

In the first phase, shown in Figure 2, a HyperSizer object is created on each of the remote 
computers.  If a PC has multiple processors, then a separate HyperSizer object is sent to 
each processor.  After creating the object, that object is told to open a central HyperSizer 
database on the controlling machine.  If successful, the remote object returns a “Success” 
flag to the central controlling computer.  Because the controlling computer waits for a 
success or failure from each machine before continuing to the next, this initialization 
process is serial.  If any of the processes on the remote computers fail to initialize, the 
parallel process is terminated and the controlling computer shuts down the HyperSizer 
objects on each processor. 

 

Figure 2:  HyperSizer Parallel Initialization Process – A serial operation 
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Phase Two: Start 
In the second phase, shown in Figure 3, the HyperSizer process is kicked off by the 
central process for each remote computer.  The remote HyperSizer objects first obtain all 
of the sizing data for the groups that it is assigned to size from the central database on the 
controlling computer.  After exporting this information from the database, the object 
spawns a process that actually performs the analysis/sizing.  After successfully spawning 
this process, the remote computer passes a flag back to the controller to tell it that it was 
successfully started.   
 
When the remote object passes its state back to the controller, the controller then goes to 
the next processor, however the spawned process continues to run and the remote 
HyperSizer object that spawned the analysis keeps track of the state of this process.  At 
this point, the spawned processes are running in parallel.  For typical sizing problems, 
these spawned analysis processes are by far the most CPU intensive processes in the 
sizing procedure.  Therefore, except for the initial database export, the Start phase of the 
sizing is done in parallel. 

Phase Three:  Finish 
The final phase, shown in Figure 4, takes place after the spawned analysis jobs have been 
completed.  The controller keeps track of which machines still have processes running, 
and at regular intervals, queries each of the remote HyperSizer objects in turn to 
determine if their respective analyses have been completed.   When an analysis is 
complete, the central controller instructs the remote object to import its results to the 
central database.  During this procedure, the central controller waits until the database 

Figure 3:  HyperSizer Parallel Start Process – A parallel operation (mostly) 
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import is complete before doing anything else.  After completing the database import, the 
controller tells the remote object to shut itself down, removes it from its list of running 
computers, and then resumes monitoring the computers with analyses still running. This 
procedure continues until all remote computers have completed their analyses, imported 
results to the central database, and shutdown.  At this point, the HyperSizer parallel 
sizing is complete. 
 
Because each remote Finish process must be completed before any other remote 
processor can begin to Finish, this operation is serial.  For example, if all of the spawned 
processes complete at the exact same time, then each would wait in a queue until the 

other processes were completed.  In reality, however, the processes will very seldom 
return at the same time, so that one processor can be finishing and importing results to the 
database, while the other processors are still performing their analyses.  The ideal setup is 
one in which each remote processor returns and begins its Finish procedure just as 
another remote computer completes its own.  In this way, the Finish procedure can 
remain parallel in nature.  

 
Speedups obtained using the HyperSizer parallel capability are discussed in the example problem 
discussed in the next section. 
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Figure 4:  HyperSizer Parallel Finish Process – A serial or parallel operation 
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Example Setup and Results 
 
As an example, the HyperSizer parallel analysis was applied to a “typical” RLV design to 
quantify its performance.  The design is a 3rd Gen RLV concept called GTX (Shown in Figure 5), 
which was studied by NASA Glenn Research Center.  In this example problem, we re-
analyze/optimize the entire engine of the GTX vehicle, that was analyzed several months ago 
using the normal, serial HyperSizer software. 
 

The problem was analyzed using six 
computers from our office network 
with processor speeds ranging from 
450 MHz to 1700 MHz.  The first step 
was to run the GTX problem on each 
computer to gauge the relative speeds 
of each computer running HyperSizer.  
The results were all normalized 
against the fastest of our 1700 MHz 
PCs, which was used as a benchmark.  
The actual and normalized execution 
times for each computer are listed in 
Tables 1 and 2 respectively. 

 

Table 1:  Actual CPU times for execution of GTX optimization 

PC  MHZ  Memory Total run 
time in 

 (seconds) 

Total run 
time in 

 (minutes:sec) 

Data I/O 
files 

 (seconds) 
R10 1700 512  2001 33:21 7 
R8 notebook 850 256 2167 36:07 10 
R11 1700 512 2485 41:25 10 
R7 notebook  700 192 2510 41:50 13 
R6 600 256 3397 56:37 18 
R9 450 256 5696 1:34:56 22 
Average 1000 300 3043 50:43 13 

 
 

Table 2:  Normalized CPU times for execution of GTX optimization 

PC  MHZ  Memory Total run 
time 

 (Normalized) 

% CPU 
power of 

total 

Data I/O files 
 (Normalized) 

R10 1700 512 1 .223 1 
R8 notebook 850 256 1.08 .207 1.42 
R11 1700 512 1.24 .180 1.43 
R7 notebook  700 192 1.25 .179 1.86 
R6 600 256 1.70 .1315 2.57 
R9 450 256 2.84 .0787 3.14 
Average 1000 300 1.52 0.9998 1.90 

Figure 5:  GTX 3rd Gen RLV Concept 
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Theoretically, with a perfectly parallel process, the time to complete the project with all six 
computers running in parallel is 7 minutes and 28 seconds. This is obtained by finding the “total 
computing power” of the system, which is 

 

47.4....
24.1
1

08.1
1

1 =+++  

 
Then dividing the processing time by this number gives us the theoretical lower limit: 

 

 28:7
47.4

2001
=  

 
The % CPU power of each computer is then calculated for each computer.  

 

 R10: 223.
47.41

1
=

⋅
 R8: 207.

47.408.1
1

=
⋅

  R11:  180.
47.424.1

1
=

⋅
 

 
We then attempt to balance the parallel job over the network of 
available PC’s so that R10 is processing about 22.3% of the 
project’s groups, R11 about 18.0%, etc.  
 
Currently, the entire time to run the project in parallel on the six computers is 8:49 minutes. A 
possible measure of the speed-up factor is to divide the average solo run times of all computers 
by the actual parallel run time.  
 

S  = 75.5
49:8
43:50

=  

 
Doing this shows that the speed increase is 5.75. However, this is idealized somewhat and the 
approach is flawed because this math would show a ratio greater than 6.00 when the parallel run 
time gets close to the limit of 7:28.    
 
Therefore, this same equation is used to back out the composite solo run time of 44:48 for 
comparative speed increase purposes.  
 

00.6
28:7
48:44

=  

 
So the appropriate ratio is: 
 

S  = 08.5
49:8
48:44

=  
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Finally, the ratio of actual speed increase to the theoretical increase is getting close to a one-to-
one ratio: 
 

%85
6
08.5

=  

 
Amdahl’s Law  
 
Amdahl’s law is difficult to apply to this problem because in its truest form, it applies to parallel 
processing where all processors are exactly the same.  In our case, every computer has a different 
processing speed, different memory, hard drive space, etc.  By using the speed up factors 
calculated above however, we can attempt to back out the performance by Amdahl’s Law, and 
then use it to predict future behavior.  Amdahl’s Law is given by: 
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=
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where S is the speedup factor, F is the fraction of the sequential code that can be parallelized, and 
P is the number of processors available for parallel operations.  We solve this equation for F to 
obtain: 
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In the idealized case where the speedup factor, S, was calculated to be 5.75, the fraction of 
parallelizable code, F, comes out to be 
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And in the more realistic case, S = 5.08, the ratio comes out to be 
 

964.0
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=
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Plugging these two ratio’s into Amdahl’s law, we can predict the behavior of the parallel system 
for an increasing number of processors. 
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F = 0.991  F = 0.964 
P S  P S 
2 1.98  2 1.93 
10 9.25  10 7.55 
100 52.88  100 21.9 
Limit 111.1  Limit 27.8 

 
The actual parallelizable ratio, F, probably lies somewhere between these extremes, but these 
results do show the limitations of the parallel method.  We can conclude that if we were to apply 
100 processors to this problem, that we would expect more than 22 and no more than 52 times 
speedup. 


