
White Paper: Parallel Computing with HyperSizer Page 1
September 30, 2001

 Copyright © 2001 Collier Research Corporation

White Paper:
Parallel Processing with HyperSizer
Phil Yarrington, Craig Collier, Mark Pickenheim
Collier Research Corporation
September 2001

Overview
The commercial HyperSizer® software performs structural analysis and sizing optimization. It
can be operated interactive or in batch mode on a single workstation. A parallel capability that
executes and controls the entire process over multiple computers has recently been implemented.
In either use case, the process begins by identifying parts of a finite element model into
manufacturing sized pieces called structural components. When sizing a structure, these
components are collected together into organizational units called optimization groups. A
feature of the sizing process is that groups can be executed independently, lending itself well to
parallelization. This document describes the design and implementation of the HyperSizer
parallelization approach.

HyperSizer was parallelized such that each group, or sets of groups, can be sent to different
processors, with the ultimate goal of reducing the clock run-time of the HyperSizer analysis.
The parallel version of HyperSizer has the following features:

• Only one HyperSizer parallel server license is required to execute HyperSizer on as many

computers and processors as desired.
• The individual computers on the network, rather than the central controlling computer

perform the majority of HyperSizer I/O and numerical processing so that for long running
processes, a high parallel to serial computing ratio can be achieved.

• The network traffic is minimized between computers by allowing each workstation to
perform its own disk I/O. This means the HyperSizer parallel process running over a
network of computers does not bog down the network.

• Database import and management of temporary files is done automatically and is transparent
to the HyperSizer user. All of the computed results are automatically imported into the
database of the controlling computer.

• The HyperSizer process runs on each computer as a “low-priority” task, so that workstations
running part of the HyperSizer parallel process can be used for other applications with very
little impact to a workstation interactive user.

• The user can dictate the workstations on the local network on which to execute HyperSizer,
can determine the relative performance of each (e.g. CPU clock speed, available memory),
and tests each computer to ensure that HyperSizer is properly installed before attempting to
submit a run.

• HyperSizer groups can be divided among processors on one multi-processor computer or can
take advantage of processors on a network of computers. The number of processors
available and the relative performance of each processor determine the division of groups.

An example running parallel on six processors
As a test problem, the HyperSizer parallel capability was applied to a candidate 3rd Gen RLV
design. Using six single processor computers networked together, we were able to obtain a

White Paper: Parallel Computing with HyperSizer Page 2
September 30, 2001

 Copyright © 2001 Collier Research Corporation

speedup of 5.08 over traditional HyperSizer. The networked computers each have different
processor speeds as well as differences in memory, hard drive space, and installed software. The
results are shown in Figure 1. By taking into account the total processing power available on the
network, a minimum processing time (if the parallelization of the problem was perfect) of 7.47
minutes was calculated. The actual time that it took to complete the problem was 8.82 minutes.
By multiplying the theoretical minimum process time (7.47 minutes) by the theoretical perfect
speedup factor of 6, a composite average process time of 44.8 minutes was obtained. Finally, the
average time that it took each processor to complete the job as a standalone serial process was
calculated to be 50.72 minutes. Additional details from this example are in the “Example Setup
and Results” section below.

Implementation
The creation of the HyperSizer Object model has presented an opportunity for a great deal of
automation of the HyperSizer structural sizing process. For example by instantiating HyperSizer
objects, a user can start HyperSizer, create and size components, groups, assemblies and projects,
and retrieve results. In addition, because
the HyperSizer Object Model is built with
Microsoft’s COM and ActiveX, it can be
access remotely with very little effort by
the end user with the Microsoft Windows
built-in remote processing facility called
DCOM (Distributed Component Object
Model).

The HyperSizer parallel capability uses
DCOM to remotely create HyperSizer

Note: Because HyperSizer Parallel works
identically for multiple networked computers
and for single multi-processor computers,
the terms processor, computer, workstation
and machine are used interchangeably in
this document. In addition, “remote” refers
to any processes other than the central
controlling process and could refer to a
process on the same computer as the
controlling process.

Figure 1: HyperSizer Parallel Processing Results;
6 computers used, speedup factor: 5.08

White Paper: Parallel Computing with HyperSizer Page 3
September 30, 2001

 Copyright © 2001 Collier Research Corporation

Object Model Processes on each networked computer, and then monitor these processes to
determine when the overall sizing is complete. This could be done almost exclusively using the
object model on each computer, however, some minor modifications were made to the process to
prevent database conflicts where multiple computers were accessing tables within a single
HyperSizer database simultaneously.

To avoid these database import and export collisions, the HyperSizer parallel process was broken
into three phases.

Phase One: Initialization

In the first phase, shown in Figure 2, a HyperSizer object is created on each of the remote
computers. If a PC has multiple processors, then a separate HyperSizer object is sent to
each processor. After creating the object, that object is told to open a central HyperSizer
database on the controlling machine. If successful, the remote object returns a “Success”
flag to the central controlling computer. Because the controlling computer waits for a
success or failure from each machine before continuing to the next, this initialization
process is serial. If any of the processes on the remote computers fail to initialize, the
parallel process is terminated and the controlling computer shuts down the HyperSizer
objects on each processor.

Figure 2: HyperSizer Parallel Initialization Process – A serial operation

1

2

3

Initialize

Succe
ss

Initialize

Success

Initialize
Success

Start HyperSizer
Open Database
Return

Start HyperSizer
Open Database
Return

Start HyperSizer
Open Database
Return

Central/Controlling
Computer

Remote Computer

Local or
Remote Processor

Local or
Remote Processor

White Paper: Parallel Computing with HyperSizer Page 4
September 30, 2001

 Copyright © 2001 Collier Research Corporation

Phase Two: Start
In the second phase, shown in Figure 3, the HyperSizer process is kicked off by the
central process for each remote computer. The remote HyperSizer objects first obtain all
of the sizing data for the groups that it is assigned to size from the central database on the
controlling computer. After exporting this information from the database, the object
spawns a process that actually performs the analysis/sizing. After successfully spawning
this process, the remote computer passes a flag back to the controller to tell it that it was
successfully started.

When the remote object passes its state back to the controller, the controller then goes to
the next processor, however the spawned process continues to run and the remote
HyperSizer object that spawned the analysis keeps track of the state of this process. At
this point, the spawned processes are running in parallel. For typical sizing problems,
these spawned analysis processes are by far the most CPU intensive processes in the
sizing procedure. Therefore, except for the initial database export, the Start phase of the
sizing is done in parallel.

Phase Three: Finish
The final phase, shown in Figure 4, takes place after the spawned analysis jobs have been
completed. The controller keeps track of which machines still have processes running,
and at regular intervals, queries each of the remote HyperSizer objects in turn to
determine if their respective analyses have been completed. When an analysis is
complete, the central controller instructs the remote object to import its results to the
central database. During this procedure, the central controller waits until the database

Figure 3: HyperSizer Parallel Start Process – A parallel operation (mostly)

1

2

3

Start A
nalysi

s

Starte
d

Start Analysis

Started

Start AnalysisStarted

Export From Database
Spawn Analysis/Sizing
Return

Export From Database
Spawn Analysis/Sizing
Return

Export From Database
Spawn Analysis/Sizing
Return

Analysis 1

Analysis 2

Analysis 3

Serial
Processes

Parallel
Processes

White Paper: Parallel Computing with HyperSizer Page 5
September 30, 2001

 Copyright © 2001 Collier Research Corporation

import is complete before doing anything else. After completing the database import, the
controller tells the remote object to shut itself down, removes it from its list of running
computers, and then resumes monitoring the computers with analyses still running. This
procedure continues until all remote computers have completed their analyses, imported
results to the central database, and shutdown. At this point, the HyperSizer parallel
sizing is complete.

Because each remote Finish process must be completed before any other remote
processor can begin to Finish, this operation is serial. For example, if all of the spawned
processes complete at the exact same time, then each would wait in a queue until the

other processes were completed. In reality, however, the processes will very seldom
return at the same time, so that one processor can be finishing and importing results to the
database, while the other processors are still performing their analyses. The ideal setup is
one in which each remote processor returns and begins its Finish procedure just as
another remote computer completes its own. In this way, the Finish procedure can
remain parallel in nature.

Speedups obtained using the HyperSizer parallel capability are discussed in the example problem
discussed in the next section.

1

2

3

Finish

Finished

Finish

Finished

Finish
Finished

Import To Database
Return

Serial or Parallel
Processes

Done?
Yes

Return
No

Import To Database
Return

Done?
Yes

Return
No

Import To Database
ReturnDone?

Yes

Return
No

Figure 4: HyperSizer Parallel Finish Process – A serial or parallel operation

White Paper: Parallel Computing with HyperSizer Page 6
September 30, 2001

 Copyright © 2001 Collier Research Corporation

Example Setup and Results

As an example, the HyperSizer parallel analysis was applied to a “typical” RLV design to
quantify its performance. The design is a 3rd Gen RLV concept called GTX (Shown in Figure 5),
which was studied by NASA Glenn Research Center. In this example problem, we re-
analyze/optimize the entire engine of the GTX vehicle, that was analyzed several months ago
using the normal, serial HyperSizer software.

The problem was analyzed using six
computers from our office network
with processor speeds ranging from
450 MHz to 1700 MHz. The first step
was to run the GTX problem on each
computer to gauge the relative speeds
of each computer running HyperSizer.
The results were all normalized
against the fastest of our 1700 MHz
PCs, which was used as a benchmark.
The actual and normalized execution
times for each computer are listed in
Tables 1 and 2 respectively.

Table 1: Actual CPU times for execution of GTX optimization

PC MHZ Memory Total run
time in

 (seconds)

Total run
time in

 (minutes:sec)

Data I/O
files

 (seconds)
R10 1700 512 2001 33:21 7
R8 notebook 850 256 2167 36:07 10
R11 1700 512 2485 41:25 10
R7 notebook 700 192 2510 41:50 13
R6 600 256 3397 56:37 18
R9 450 256 5696 1:34:56 22
Average 1000 300 3043 50:43 13

Table 2: Normalized CPU times for execution of GTX optimization

PC MHZ Memory Total run
time

 (Normalized)

% CPU
power of

total

Data I/O files
 (Normalized)

R10 1700 512 1 .223 1
R8 notebook 850 256 1.08 .207 1.42
R11 1700 512 1.24 .180 1.43
R7 notebook 700 192 1.25 .179 1.86
R6 600 256 1.70 .1315 2.57
R9 450 256 2.84 .0787 3.14
Average 1000 300 1.52 0.9998 1.90

Figure 5: GTX 3rd Gen RLV Concept

White Paper: Parallel Computing with HyperSizer Page 7
September 30, 2001

 Copyright © 2001 Collier Research Corporation

Theoretically, with a perfectly parallel process, the time to complete the project with all six
computers running in parallel is 7 minutes and 28 seconds. This is obtained by finding the “total
computing power” of the system, which is

47.4....
24.1
1

08.1
1

1 =+++

Then dividing the processing time by this number gives us the theoretical lower limit:

 28:7
47.4

2001
=

The % CPU power of each computer is then calculated for each computer.

 R10: 223.
47.41

1
=

⋅
 R8: 207.

47.408.1
1

=
⋅

 R11: 180.
47.424.1

1
=

⋅

We then attempt to balance the parallel job over the network of
available PC’s so that R10 is processing about 22.3% of the
project’s groups, R11 about 18.0%, etc.

Currently, the entire time to run the project in parallel on the six computers is 8:49 minutes. A
possible measure of the speed-up factor is to divide the average solo run times of all computers
by the actual parallel run time.

S = 75.5
49:8
43:50

=

Doing this shows that the speed increase is 5.75. However, this is idealized somewhat and the
approach is flawed because this math would show a ratio greater than 6.00 when the parallel run
time gets close to the limit of 7:28.

Therefore, this same equation is used to back out the composite solo run time of 44:48 for
comparative speed increase purposes.

00.6
28:7
48:44

=

So the appropriate ratio is:

S = 08.5
49:8
48:44

=

White Paper: Parallel Computing with HyperSizer Page 8
September 30, 2001

 Copyright © 2001 Collier Research Corporation

Finally, the ratio of actual speed increase to the theoretical increase is getting close to a one-to-
one ratio:

%85
6
08.5

=

Amdahl’s Law

Amdahl’s law is difficult to apply to this problem because in its truest form, it applies to parallel
processing where all processors are exactly the same. In our case, every computer has a different
processing speed, different memory, hard drive space, etc. By using the speed up factors
calculated above however, we can attempt to back out the performance by Amdahl’s Law, and
then use it to predict future behavior. Amdahl’s Law is given by:

()
P
F

F
S

+−
=

1

1

where S is the speedup factor, F is the fraction of the sequential code that can be parallelized, and
P is the number of processors available for parallel operations. We solve this equation for F to
obtain:







 −

−
=

P
S

S
F

11

1

In the idealized case where the speedup factor, S, was calculated to be 5.75, the fraction of
parallelizable code, F, comes out to be

991.0

6
1175.5

175.5
=







 −

−
=F

And in the more realistic case, S = 5.08, the ratio comes out to be

964.0

6
1108.5

108.5
=







 −

−
=F

Plugging these two ratio’s into Amdahl’s law, we can predict the behavior of the parallel system
for an increasing number of processors.

White Paper: Parallel Computing with HyperSizer Page 9
September 30, 2001

 Copyright © 2001 Collier Research Corporation

F = 0.991 F = 0.964
P S P S
2 1.98 2 1.93
10 9.25 10 7.55
100 52.88 100 21.9
Limit 111.1 Limit 27.8

The actual parallelizable ratio, F, probably lies somewhere between these extremes, but these
results do show the limitations of the parallel method. We can conclude that if we were to apply
100 processors to this problem, that we would expect more than 22 and no more than 52 times
speedup.

