White Paper: Customizing HyperSizer with User-Defined Plug-ins 10f12
December, 2001

White Paper:
Customizing HyperSizer with User-Defined Plug-Ins

Phil Yarrington, Craig Collier, Mark Pickenheim
Collier Research Corporation
December 2001

Introduction

Companies often develop engineering analysis programs to solve particular problems, but
many times these codes never get past the level of "research". These codes are often
shelved due to their difficulty of use, cumbersome ASCII data input and output, and lack
of expert users. HyperSizer now provides an engineering environment where user
developed or proprietary analyses codes can be efficiently plugged directly into the
HyperSizer analysis and optimization process. HyperSizer Plug-Ins breathe new life into
legacy analysis programs, and engineers need only learn one interface that is all
encompassing for automated structural sizing, detailed stress analysis, and report
generation.

HyperSizer uses a Plug-In standard that defines categories of analysis methods such as
composite strength, panel/beam buckling, local buckling, bolted joint analysis, etc. and
provides an interface with typical data required for each analysis. For example, bolted
joint analysis requires hole diameter, concentrated bolt load, loading angle, etc. In
addition, the plug-in standard is flexible in permitting additional, unplanned unique data
to be passed between the plug-in code and HyperSizer. These additional variables are
entered into the HyperSizer GUI and
stored in the HyperSizer database.
Once plugged in, the user-defined —
analysis automatically becomes part of \ =
HyperSizer’s optimization. Finally,

margin of safety results generated by

the plug-in are passed back to Bu:k’ﬁg:mﬁ - J—-—

Plug-In |
. a4 A

HyperSizer and displayed in the i)
HyperSizer GUI with all other margins
of safety.
. Legacy bolt Plug-in |
Two industry standard legacy codes e J 4
were integrated with HyperSizer using
the HyperSizer plug-in capability and Figure 1: Plug-Ins enable customization of
are distributed as part of the software HyperSizer analyses by including legacy and
package. Those codes are BISFM, a proprietary methods

bolted joint analysis program, and SS§,
a Ritz panel buckling analysis tool that analyzes curved panels and allows for general
(free, fixed, or pinned) panel boundary conditions.

Wizef ©2001 Collier Research Corporation

White Paper: Customizing HyperSizer with User-Defined Plug-ins 20f 12
December, 2001

Overview

Test data validation and years of use make standalone legacy codes invaluable to
industry. As such, they are necessary building blocks for design synthesis. For this
reason, our objective is to include them as an intrinsic part of our core software whenever
possible. One possibility is for companies to contract with Collier Research to
incorporate these methods into the core of our software. It is understandable, however,
that in many cases companies are unwilling to release proprietary source code.

Therefore, the Plug-In capability offers an alternative that allows each company’s
methods developers to plug-in their own user defined analysis methods directly into
HyperSizer. By compiling Fortran, C, or C++ analysis routines into a dynamic link
library (DLL), legacy and specialty analysis software are integrated directly. This
coupling is possible with no performance slow-down to the original codes, and no
intermediate ASCII files. The plugged-in software computes as efficiently as
HyperSizer’s built-in analyses. The capability offers users three benefits.

Benefit One

Plug-Ins provide a data handling framework, specifically for structural
analysis methods, that incorporates legacy, standalone codes and brings them
new life. This framework includes a user-friendly GUI that provides
productivity and a relational database management system that provides data
integrity. The legacy code automatically shares all material and composite
data, is included in all FEA multiple design-to load cases, is executed for all
structural assemblies, groups, and components, and becomes part of the
optimization. Results from the analysis are maintained in the database with
all other project data, can be plotted graphically, and are included in HTML
stress reports.

Benefit Two

Plug-Ins provide the ability to customize HyperSizer while maintaining secure
proprietary source code. Software is coupled at the user’s sight by using the
published interface protocols for each analysis type. Each company maintains
its own codes, which protects the competitive edge they provide to the
company.

Benefit Three

Finally, Plug-Ins provide an environment for developing, compiling, and
testing/debugging of new analytical capability. By piggy-backing off of
HyperSizer’s infrastructure for controlling data flow, researchers can focus
efforts on their methods development. In this way it becomes an ideal tool for
university or government research.

In addition to numerical results, the HyperSizer interface protocols include graphics

information. Analysis results from plugged-in software can be displayed in the
HyperSizer GUI as the analysis is executed. The HyperSizer snapshots shown in Figure 2

Wizef ©2001 Collier Research Corporation

White Paper: Customizing HyperSizer with User-Defined Plug-ins 3of 12
December, 2001

show displacement fields predicted by the BISFM bolted composite program including
the effects of far field stress resultants on the loaded hole(left) and the buckling mode
shape of a Ritz cylindrical panel buckling energy solution (right). In both cases these
analyses were implemented as customer legacy codes and automatically became part of
the design optimization process.

Y

ad: 1 Options

[Variables T Concepts T 78D | Objectloads | Options [Variables T Concepts T F Object Loads
Computed Properties | Buckling

D
Graphics 1l Fallure Y Design-toLoads | Computed Properties | Buckling Graphics L Failure | Design-toLoads |

Panel width (16.0) Pane| Widh (16.0)

shov g

—Component Displa ~Component Disple

i e Show Min /Max,
Optimal
Show Buckling
Deformation
i 5
]

Rotx Roty [I Zoom«| | »[[450 Dolly Rotx Roty’
Drag movse on araphics o rotats, hold CTRL to pan, hald SHIFT-CTRL t z00m __Refresh | Drag mouse on graphics t rotate, hold CTRL to pan, hold SHIFT-CTRL t zoom

i
i
i

Shaw Optimal Cra
Section

Jil

Show Strength
Deformation wht

}
i

~Finite Element Mo
Export FEM an

LT

I~ Plot Current Farr

rop

L) ™ On Assembly

™ on Full odel
Refresh t

i
Ain Val
4
B
g
F

O el

Zoom s _| [/ 450 Dolly

Figure 2: Graphical display of data generated by Plug-Ins and
displayed in the HyperSizer interface

The Plug-In capability currently allows customization of the following analysis methods
in HyperSizer:

Beam Buckling — Failure methods associated with overall beam buckling of
concepts such as [-Beam, C-Beam, etc.

Bolted Hole — Failure methods associated with open holes and bolt loaded
hole analysis. These analyses include holes with concentrated forces at
arbitrary angles and far-field loading effects.

Composite Strength — Failure methods associated with composite failure
theory. Examples include Tsai-Hill, Tsai-Wu, etc.

Crippling — Failure methods associated with panel and beam crippling. User-
defined crippling failure methods can be used to enter proprietary crippling
log-log curves.

Panel Buckling — Failure methods associated with overall panel buckling of
concepts such as hat-stiffened, honeycomb core, isogrid stiffened, etc.

Sandwich Core — Failure methods associated with honeycomb or foam
sandwich cores. Core crushing, shear crimping and shear strength are

examples of sandwich core failure modes.

Sandwich Face — Failure methods associated with honeycomb or foam
sandwich facesheets. Examples include wrinkling or intra-cell dimpling.

Wizef ©2001 Collier Research Corporation

White Paper: Customizing HyperSizer with User-Defined Plug-ins 4 of 12
December, 2001

In addition to these failure methods, additional methods can be implemented as
needed. For example, in the near future vibroacoustics, durability and damage
tolerance (D&DT) and reliability methods will be implemented as part of the
HyperSizer analysis and optimization. These methods may be perfect candidates
as additional Plug-In analysis types.

Description

The process of implementing a new analysis method as a HyperSizer Plug-In
consists of three steps:

Step 1: Determine the analysis category of the new analysis

The first step for implementing a new HyperSizer Plug-In is to categorize the method into
one of the existing HyperSizer Plug-In analysis categories as described above. In most
cases, this will be straightforward. To include a new code to be called from HyperSizer,
the developer should study the interface protocols available for each analysis type and
choose the one appropriate for the new method. If it turns out that the method does not
fit into one of these categories, then the next step would be to contact Collier Research
regarding the possibility of adding a new failure category to HyperSizer.

Step 2: Develop an interface in HyperSizer’s user-defined format

HyperSizer interfaces with Plug-Ins through a user-
compiled Dynamically Linked Library (DLL) file
called “Hs_UDef.DLL”. The Hs UDef library has
a specific interface for each analysis type and these
are called at specific points during HyperSizer’s
execution. The interface between the HyperSizer
core software and each analysis type is fixed. The
code within the DLL, however can be customized in
any way by adding user code or calling other legacy
analysis codes. As illustrated in Figure 3,
HyperSizer passes data specific to each analysis
type to the user-defined DLL which then executes
its own analysis. When complete, the DLL passes
margin of safety data back to the HyperSizer
interface.

HyperSizer Core Software

Data passed to DLL MOS Returned
From DLL

Hs_UDef can be built and compiled using any Figure 3: HyperSizer’s interface to the
programming language that can build a Windows user-defined dynamically linked library
DLL, including Fortran, C or C++. DLLs have been

compiled and successfully integrated with HyperSizer using Microsoft Fortran
PowerStation, Compaq Visual Fortran Version 6, and Microsoft Visual C++ Version 6.

It is even possible to mix programming languages within the DLL such that some

routines are built using Fortran and some using C or C++.

Wizef ©2001 Collier Research Corporation

White Paper: Customizing HyperSizer with User-Defined Plug-ins 50f 12
December, 2001

Rules-of-thumb for Plug-In development: Several rules-of-thumb and utility
routines provided as part of our

e Verify input data against validated distributed DLL code help the

ranges for the software development of the user-defined

* Minimize file VO of the analysis analysis method go smoothly. First,

e Trap poj[entlal errors and report them to the input data that comes through the
HyperSizer HyperSizer interface should be verified

against the bounds identified for the

legacy code’s data to ensure that the data is not outside the validated range of the

software. Utility routines are provided to help the user check these ranges.

Second, ASCII file input and output should be limited as much as possible during the
execution of the user-defined code. As part of the HyperSizer run-stream, the user-
defined method can potentially be called hundreds or thousands of times during a typical
sizing, therefore it is important to minimize file I/O, which is a very slow operation.

Third, potential €Irors ShOuld be trapped and i | Llosed Bpan [#] _omposite Strength, Max Skrain 1 Drection

assed baCk to H ers- er and an error E‘ E!DSEI:! Span [2! Composite Strength, MMax Skrain 2 Direction
passec back 10 Bypers1zer anc a & T
reporting utility function is provided. For 3 _ _ _ _

. . M EMOr occured whike executing a user-delned analysis:
le, if the input dat d to the P1 = ceteaeae s e e
examp.e’ 1 ¢ lnpu ata passe 0 . c ug_ t? "Composite Strength, User Defined Analysis #2(Tutarial Example)”
In routine exceeds the software’s validated W LoD S8
2 JEC =
range, an error should be reported to I b Fi
HyperSizer. If an un-trapped error occurs B uori
. . Erine:

during the execution of the user-defined
subroutine, such as “divide by zero”,
HyperSizer will report the analysis being Figure 4: Un-trapped errors in user-defined
performed, the structural component being methods are reported in the HyperSizer GUI

analyzed, and other useful information to
help the user track down the error.

Step 3: Activate and execute the method from the HyperSizer GUI

Once the interface to the user code is built and the DLL is compiled, the final step is to
activate the user-defined code in the HyperSizer GUI and then actually execute the
analysis. HyperSizer treats user-

- ilable Failure ¥
deﬁned analyses 1n the same Way that Limit M5 Ll M5 Location - Analysis Description
. 2123 2,123 . . Max Skrain 1 Direction
it treats its built-in, intrinsic analyses. R t?]lle he;;e (tjo activate |Max Srain2 Diractin
. 3 iS met O MGX Lraln p \TEE an
The user has complete control over S04 THeTSenTZT SR Click hore to label
h 1 f d f h 5.37 C.37 losed Span [2] Composite Sk _IC ere 1o labe
what ana yseS are per orme or eac A ég? ég{?/ E:nseg gpan Eg% Eomposwge g: this method
. . J osed Span omposite
structural component. As shipped, B]| et o o o e
user-defined analyses in the / é Closed span [2] Compecte oot L Defrid Araiyin g1
. . Closed Span [2] Composite . | s
Hyperslzer lnterface arc all Closed Span [2] EBolted LahEl This Analysis..
. . Closed Span [2] Eolt Hole, A Sort MOS's R
deactivated and have generic names (25 Show User Defined Analyses

such as “Composite Strength, User
Defined Analysis #1”. In order to give
the analysis method a customized
name, the user only needs to right

Wizef ©2001 Collier Research Corporation

Figure 5: Labeling and activating user-defined
methods in the HyperSizer GUI

White Paper: Customizing HyperSizer with User-Defined Plug-ins 6 of 12
December, 2001

click on the analysis method in the GUI to get a drop-down menu as shown in Figure 5.
The assigned name then stays with this method both in the interface and in user-generated
HTML stress reports. The analysis is then activated by clicking either the Limit MS or
the Ultimate MS column.

Examples

Example One: User-Defined Tsai-Hill Failure Method

As an example of implementing a user defined analysis, we start with a simple
implementation of the Tsai-Hill composite failure method. Tsai-Hill is also included as
an intrinsic HyperSizer failure method. The failure criterion takes the form:

2 2 2
1 — On + O.ai On Oxn + Oxn + T
MOS + 1 O-l Lall O-l Lall O-l Lall O-ZZ,all O-ZZ,all TlZ,all
The steps to implement this margin of safety calculation as a software Plug-In are
outlined below. The examples shown below are strictly for illustrative purposes, and are

not necessarily intended to be tutorials. More detailed instructions are found in the
HyperSizer Programmers Guide.

Step One: Determine the analysis category of the new analysis

The Tsai-Hill margin of safety calculation uses only stresses (611, 22, and T;7) and stress
allowables (G111 and G22.41) 1n its margin of safety. Therefore, this method is a perfect
candidate to be plugged in as a Composite Strength method, which has inputs of stresses,
strains, and stress/strain allowables.

Step Two: Develop an interface in HyperSizer’s user-defined format
The name of the user-defined Composite Strength subroutine is fixed as Composite_Udef
and must have the following form and arguments:

REAL*8 FUNCTION Composite Udef (AnalysisIndex,

2 Strain, StrainAllow,

3 Stress, StressAllow,

4 nArrayString, ArrayString, ArrayValue)

C.. Dummy Arguments
INTEGER AnalysisIndex,nArrayString
REAL*8 Strain(3), StrainAllow(2,3)
REAL*8 Stress(3), StressAllow(2,3)
REAL*8 ArrayValue (nArrayString)
CHARACTER*50 ArrayString (nArrayString)

The first argument is AnalysisIndex, an integer argument that links the current
analysis to those defined in the GUI. For example, if “Composite Strength, User Defined
Analysis #1” is turned on in the GUI, then the value of this variable will be 1. The real
arrays Stress and Strain contain the real-time stress/strain state of the current
analysis object. The arrays StressAllow and StrainAllow contain the stress and

Wizef ©2001 Collier Research Corporation

White Paper: Customizing HyperSizer with User-Defined Plug-ins 7 of 12
December, 2001

strain allowable values. There are two sets of allowable stresses and strains
corresponding to tension properties and compression properties respectively. The final
arguments (nArrayString, ArrayString, and ArrayValue) are related to
passing user-defined constants to the subroutine and are discussed in the second example.

While the function declaration and arguments are fixed for interface to HyperSizer, the
remainder of the subroutine is completely flexible and can perform any desired operation.
The first step is to determine whether the analyzed object is in tension or compression,
and return the appropriate allowable properties. This is done in a subroutine called,
GetAllowables, which returns arrays called AllowableStress and
AllowableStrain that contain appropriate allowable data for compression or tension.
The source of this subroutine is not listed here.

CALL GetAllowables (Stress, StressAllow,
1 Strain, StrainAllow,
2 AllowableStress, AllowableStrain)

In the following IF block, if the value of AnalysisIndex is 1, then the TsaiHill
function is called. During execution of the TsaiHi11 routine, an integer error flag is
set to a non-zero value if an error occurs and this flag, along with an error string is
returned to HyperSizer using the HsReturnError utility function. Also, if
AnalysisIndex takes any value other than 1, an error message is returned to
HyperSizer because HyperSizer is apparently trying to access an undefined analysis

method (i.e. an analysis method has been activated in the GUI which has not been
defined in code).

C.. Perform user defined analysis #1: TSAI-HILL Failure Theory
IF (AnalysisIndex.EQ.1l) THEN

C.. replace this failure criteria with one of your own
MOS = TsaiHill (Stress, AllowableStress, iErr)

IF (iErr.NE.O)
1 CALL HsReturnError (iErr, 'Error in User Defined '//
2 'Composite Failure Analysis 1'")

ELSE

C.. If the index for this analysis is out of range, return error
CALL HsReturnError (-1, ’‘Undefined User Defined Analysis’)

ENDIF

Finally, the calculated margin of safety is returned to HyperSizer as the return value of
the Composite Udef function.

C.. Return margin of safety calculation
Composite Udef = MOS

RETURN
END

Wiz&r ©2001 Collier Research Corporation

White Paper: Customizing HyperSizer with User-Defined Plug-ins 8 of 12
December, 2001

The definition of the TsaiHill function is fairly straightforward. The arguments are the
Stress and AllowableStress arrays and the integer error flag, iExrr.

REAL*8 FUNCTION TsaiHill (Stress, AllowableStress, iErr)

C.. Dummy Arguments
REAL*8 Stress(3),AllowableStress (3)

The rest of the subroutine performs the margin of safety calculation. Note that if the sum
of stresses is equal to zero, then the margin of safety would be infinite, and a “divide by
zero” error would occur. To avoid this, a margin of safety of 1000 is returned.

SUM= 0.0
DO 1i=1,3

SUM= SUM + DABS (Stress(I))
ENDDO

IF (SUM.EQ.0.0) THEN
TsaiHill = 1000.0
ELSE
X= Stress(l) / AllowableStress (1)
Y= Stress(2) / AllowableStress(2)
S= Stress(3) / AllowableStress (3)
R= AllowableStress(2) / AllowableStress (1)

if (R .le. 1.0 .and. R .ge. -1.0) then
C.. the normal 1 direction stronger than the 2 direction

DNOM = DSQRT((X*X) - (R*X*Y) + (Y*Y) + (S*S))
else
C.. the normal 2 direction stronger than the 1 direction
DNOM = DSQRT((X*X) - ((1.0/R)*X*Y) + (Y*Y) + (S*S))
endif
TsaiHill = 1.0 / DNOM -1.0E+00

ENDIF

C.. Set Error flag
iErr = 0
RETURN
END

This code is then compiled as part of the Hs UDef.DLL library, as described in the
HyperSizer Programmers Guide, and is ready to be called from HyperSizer.

Step Three: Activate and execute the method from the HyperSizer GUI

The final step is to give the method a name (“User Tsai-Hill”’) and then activate the
failure method in the HyperSizer GUI. This operation is shown in Figure 5. After
executing HyperSizer, we can examine the results on the Failure tab of the Sizing form
and compare the results from this user-defined method to the HyperSizer intrinsic Tsai-
Hill method. As shown in Figure 6, the user-defined method and the intrinsic method
return identical results.

Wizef ©2001 Collier Research Corporation

White Paper: Customizing HyperSizer with User-Defined Plug-ins 9 of 12
December, 2001

—Family Concept Figure —Available Failure Analyses
Bonded Mot Stiffened Lirnit M5 Ule M5 Location - Analysis Description
Z0.85 13.57 | Web [10] Composite Strength, Max Strain 1 Direction
Clear Spai Z0.84 13.56 Web [10] Composite Strength, Max Strain 2 Direction
Bonded Combe Top [T] 3.475 1.984 | Web [10] Composite Strength, Max Strain 12 Direction
/ ~ 24,22 15.81 Web [10] Composite Strength, Max Stress 1 Direction
Closed Span [2] 24.21 1581 | Web [10] Composite Strength, Max Stress 2 Direction
W 3472 1982 | Web [10] Composite Strength, Max Stress 12 Direction
—— 3.419 1.946 | Web [10] Composite Strength, Tsai-Hill Inkeraction
i 3.647 2.098 | Web [10] Composite Strength, Tsai-wWu Interaction
3.72 2.147 | Web [10] Composite Strength, Tsai-Hahn Interaction
_ 372 2147 | Web [10] Composite Strength, Hoffman Inkeraction
Spa Span [2 " ! X
] SR L Web [10] Composite Strength, BISFM bolted hole, loaded and Far Field
—|h 3.419 [1.946 | web [10] Composite Strength, User Defined Analvsis #1 (User Tsai-Hill

Figure 6: Comparison of user-defined Tsai-Hill margin of safety with the HyperSizer
intrinsic method. As expected, the results are identical.

Example Two: User Defined Bolt Hole Analysis: BJSFM

The second example illustrates how an industry standard analysis tool, called BJSFM, is
integrated with HyperSizer as a user-defined Plug-In. When implementing BJSFM as a
HyperSizer Plug-In, the analysis portion of the established legacy source code is
unmodified, but the input and output was modified using the above defined rules-of-
thumb. The analysis type that is used by the BJSFM Plug-In is “Bolted Hole”.

The standalone BJSFM code runs from the command line and uses ASCII files for input
and output. The only major modification made to the BJSFM source code was in the way
it handles I/O. The first change that was made was to change the program into a
subroutine or function that accepts input values through its argument list.

REAL*8 FUNCTION Hs UDef Bjsfm (Alength, Blength,
Dia, HoleLoad, HoleAngle, Forces,
nArrayString, ArrayString, ArrayValue,
nObjLayup, nObjMaterial,
rObjLayup, iObjLayup, rObjMaterial)

w w wN

Next, in order to allow the code to be run either as a plug-in or as a standalone code,
logical variables were defined (LInputFile and LInputFile) that dictate whether
the input and output files were generated. Then each call that would either read or write
data from an ASCII file is wrapped in an IF block:

IF (LInputFile) THEN
READ (5, *) (MATID(J), ANG(J), PLYTHK(J), J = 1, NUMPLYRD)
IF (MATID(J) .GT. NUMMAT) MATID(J) = NUMMAT

ENDIF

The objective is to minimize file I/O by replacing READ and WRITE statements in the
standalone code with I/O directly through the subroutine call if possible. Any single
fastener composite bolt analysis program requires at least the following data, which is
provided as standard input by the HyperSizer “Bolted Hole” analysis type.

Wilﬂfg ©2001 Collier Research Corporation

White Paper: Customizing HyperSizer with User-Defined Plug-ins

December, 2001

Plate width
Length

Layup

Material properties
Far field loading
Hole diameter
Bolt load

Load direction

10 of 12

The data specific to bolted hole analyses is entered into the HyperSizer GUI as shown in

Figure 7.

rObject Holes

Ohject
IBonded Combao Top [7] j

Bolt Force Loading Angle

18,750 | s |

—_ —% —% @ — @ — @ —

IR A

M. T
X ' o
4 ¢ 90 i)
l i +8 | INXY
This Objact Has a Hole =] l ﬁ S
: r\n1xY | Mxi I
Diameter RoL A l e D gy I 4
] P § '
o | P —
| {
' I
il 1 .
Hale is loaded le kr’ K'J I

Il

—a*

MY
- It o S

— o

Figure 7: Bolted Hole data entry in the HyperSizer GUI

In addition to the general bolted hole data, the BJSFM program requires the following
specific additional data to dictate how its analysis is executed and how its own graphical
output is displayed. These additional parameters are:

Angle Increment
Starting Angle
Ending Angle
Radial Increment
Radial Steps

These additional parameters are not
applicable for all Bolted Hole analysis
programs, therefore it would not be
appropriate to include this data as part of
the general GUI. HyperSizer allows
“unplanned” data such as this to be
entered into the GUI and saved in the
database as user-defined constants.
Figure 8 shows how these constants are
entered into the GUI by assigning a
name (e.g. “Angle Increment”) and a

Hipeidizer

es | Buckling T
T Options I

—User Defined Constants

FEM, Loads
Motes

User Defined Analysis
[Rolted Joint, BISFM,Composite Strength, User Defined #1-]

“ariable Mame Default Yalue Component Yalue

==

|Ang|e Incremen |1D

IStarting nigle ID

ISE\D

[

|End ing Angle
IRadiaII creme ID.DEIEI
Radial Sfeps | |7

Value for this component
Value for any component
Variable Name (up to 50 characters)

Figure 8: User-defined constants for the
BJSFM program

©2001 Collier Research Corporation

White Paper: Customizing HyperSizer with User-Defined Plug-ins 11 0of 12
December, 2001

default value to each constant. HyperSizer passes these constants to the subroutine
whenever the user-defined BJSFM analysis method is executed. By default, the values
passed to the subroutine come from the “Default Value” column, however, this value can
be overridden for any structural component by entering a “Component Value”.

Extracting a constant within the user-defined subroutine is accomplished with a set of
utility functions called GetOptionValue. The calls to retrieve the data referred to in
Figure 8 are:

CALL GetOptionValue4 ('Angle Increment',nArrayString,

1 ArrayString,ArrayValue, IANG)
CALL GetOptionValue4 ('Starting Angle',nArrayString,

1 ArrayString,ArrayValue, ILOW)
CALL GetOptionValue4 ('Ending Angle', nArrayString,

1 ArrayString,ArrayValue, IHIGH)
CALL GetOptionValue4 ('Radial Increment',6 nArrayString,

1 ArrayString,ArrayValue, STPINK)
CALL GetOptionValueI ('Radial Steps', nArrayString,

1 ArrayString,ArrayValue, NUMSTP)

After retrieving the user defined constants, they are checked against the bounds of the
BJSFM program using the VerifyValue utility function as show below. If any of the
values are outside of the program’s bounds, an error is returned to HyperSizer using the
HsReturnError function.

DIAMin = 0.01 ; DIAMax = 1.0

IANGMin = 1.0 ; IANGMax = 30.0

ILOWMin = 0.0 ; ILOWMax = 359.0

IHIGHMin = 1.0 ; IHIGHMax = 360.0

IF (.NOT.VerifyValueI (NUMSTP, 1, 50) .OR.
1 .NOT.VerifyValue4 (DIA, DIAMin, DIAMax) .OR.
2 .NOT.VerifyValue4 (IANG, IANGMin, IANGMax) .OR.
3 .NOT.VerifyValue4 (ILOW, ILOWMin, ILOWMax) .OR.
3 .NOT.VerifyValue4 (IHIGH, IHIGHMin, IHIGHMax))GOTO 1101

1101 CONTINUE

CALL HsReturnError (-10, ' One or more variable values are' //
1 ' out of range')

Finally, after the BJSFM analysis is executed, the margin of safety is reported back to
HyperSizer and a graphical plot of the displacement in the vicinity of the hole is
displayed in the GUI as shown in the left image of Figure 2.

Wilﬂlﬂ ©2001 Collier Research Corporation

White Paper: Customizing HyperSizer with User-Defined Plug-ins 12 of 12
December, 2001

Example Three: User Defined Ritz Panel Buckling

As a final example of a user-defined analysis
method, a Ritz energy buckling program, based HyperSizer Core Software
on the legacy SS8 buckling code, was
implemented both as a new HyperSizer intrinsic
method and as a user-defined Plug-In. The Ritz
solution provides additional functionality to
HyperSizer’s original intrinsic buckling method
by allowing for curved panels and general
boundary conditions (free, pinned, fixed or
percent fixity) on each edge of a panel.

Data passed to DLL MOS Returned
From DLL

The Ritz buckling program further

demonstrates the flexibility of HyperSizer Plug- Data passed
Ins because instead of compiling with the user- to RR3 A?V
defined library, Hs_UDef.dll, the code (called
. - . . MOS returned
RR3) is actually compiled into a separate from RR3

dynamically linked library file which is then

called by Hs UDef. The data flow between

HyperSizer and the two DLLs is shown in

Figure 9. This further illustrates that other than Figure 9: Data flow between HyperSizer, the
the interface to HyperSizer, which is rigid, the user defined analysis DLL and a separate
code within the user-defined subroutines can DLL for the Ritz energy buckling analysis
perform any desired operation, include calling

other codes or libraries. In Fortran, the code for calling the Ritz code is:

EXTERNAL RR3DLL
IMSSATTRIBUTES DLLIMPORT :: RR3DLL
IMSSATTRIBUTES ALIAS: 'RR3DLL' :: RR3DLL

CALL RR3DLL (iErr, Forces, BoundCond, Spans, Radius,
4 ABDMatrix, MOS, ModeShape, UserPath)

The RR3DLL subroutine is declared as EXTERNAL which tells the compiler that the
subroutine is defined outside the project, and the compiler directives DLLIMPORT and
ALIAS tell the compiler to import the definition for the RR3DLL subroutine from a
DLL.

Just as with the Bolted Hole program, the Ritz buckling program produces graphical
output that is passed back to HyperSizer through the “ModeShape” array and is displayed
in the GUI as shown in the right side image of Figure 2.

Wizef ©2001 Collier Research Corporation

	Introduction
	Overview
	Description
	Step 1: Determine the analysis category of the new analysis
	Step 2: Develop an interface in HyperSizer’s user-defined format
	Step 3: Activate and execute the method from the HyperSizer GUI

	Examples
	Example One: User-Defined Tsai-Hill Failure Method
	Example Two: User Defined Bolt Hole Analysis: BJSFM
	Example Three: User Defined Ritz Panel Buckling

