

© 2002 Collier Research Corp.

Collier Research Corporation

Pretest Prediction to Uniform Compression Load – Grid Stiffened Panel Structural Certification

HyperSizer Grid Stiffened Panel Test

Pretest Prediction to Uniform Compression Load – Grid Stiffened Panel Structural Certification

Local buckling of the skin pockets

8500 lb, <u>HyperSizer</u> predicted

• 8000 lb, Test result

Non-linear, post-buckling full panel buckling

 41,600 lb, <u>HyperSizer</u> predicted

• 42,325 lb, Test result

HyperSizer Grid Stiffened Panel Test

Pretest Prediction to Uniform Compression Load – Grid Stiffened Panel Structural Certification

The failure location is the 0-degree (longitudinal) rib.

HyperSizer predicted failure mode and location matched the actual test failure mode and location.

Pretest Prediction to Uniform Compression Load – Hat Stiffened Panel Structural Certification

Reusable Launch Vehicle (RLV) Intertank - Failure Load Prediction for a Test Article

Y (transverse) Back support wall **X**(longitudinal) N_x J stiffeners Hat stiffeners

Analyze and optimize <u>structural</u> <u>area</u> in detail

RLV HyperSizer Customers

Pretest Prediction to Uniform Compression Load – Hat Stiffened Panel Structural Certification

Index Top

Pretest Prediction to Uniform Compression Load – Hat Stiffened Panel Structural Certification

RLV HyperSizer Customers

Local Buckling Load Comparison Between Analyses and an Experimental Test

Analysis Type		Nx _{cr} (Ib/in)			
NASA Dryden Research	NASA Dryden Research Center independent				
analyses:					
Elastically supported		1600			
Simply supported		1601			
HyperSizer	[without frame included]	1638			
Finite Element Analysis	[without frame included]	1654			
Experimental test	[with frame included]	1725*			

Failure Analyses Verifications

yperSizer

Honeycomb Sandwich Anisotropic Panel Buckling Load Comparison to Published Data

#	A (in) X	B (in) Y	Layup	HyperSizer without	HyperSizer with TSF	Published Data
	span	span		TSF		AIAA-98-2084
1	19.685	39.37	[0/90/0/90/core]s	694	634	652
2	39.370	39.37	[0/90/0/90/core]s	352	335	343
3	78.740	39.37	[0/90/0/90/core]s	352	335	343
4	39.37	39.37	[45/-45/45/-45/core]s	597	549	571
5	39.37	78.74	[0/0/0/0/core]s	297	285	287

"Free Vibration and Buckling Analysis of Anisotropic Sandwich Plates with Edges Elastically Restrained Against Rotation", Pierre Marcellier and Masoud Rais-Rohani, 39TH AIAA/ASME/ASCE/AHS/ASC Structures, Dynamics, & Materials Conference April 1998 AIAA-98-2084

Panel and Beam Crippling Methods for Metallic and Composite Materials

Crippling stress comparisons for a metallic Z beam

Analysis Type	Crippling Stress (ksi)
Text book reference [3]*	63
HyperSizer with Niu log-log test curves**	63
HyperSizer with LTV log-log test curves	63.6

References

 Mil-Hdbk-17-3E, DOD Coordination Working Draft, 1998.
Fogarty, J.H., "Crippling of Titanium Matrix Composite Stiffeners", Journal of Composite Materials, Vol 26, No. 7, 1998
Niu, C. Y., <u>Airframe Stress Analysis and Sizing</u>, 1st edition October 1997. ISBN 962-712-07-4, p. 444

HyperSizer includes all A_{ij} , B_{ij} , D_{ij} in the Crippling Analysis

Failure Analyses Verifications

Correlation to Hexcel Methods for Honeycomb Sandwich

Analysis Type	Benchmark Data	HyperSizer
Beam buckling*	0.52	0.52
Beam buckling, transverse shear	0.51	0.51
flexibility		
Facesheet yielding stress	10.5	10.5
Facesheet wrinkling	45.8	45.8
Facesheet dimpling	30.0	30.0
Core shear strength	12.1	11.6**
Core crushing	NA	29.0
Core shear crimping	254	254

* HyperSizer analysis performed beam buckling with panel methods

** different correction factor used

Anisotropic Panel Buckling to Shear Loads

Figure 1.a, Left Image. HyperSizer computed mode shape using Raleigh Ritz 3 series displayed in HyperSizer graphics. Buckling safety factor equal to **3.437**

Figure 1.b, Right Image. MSC/NASTRAN computed mode shape displayed with FEMAP. Buckling safety factor equal to **3.442**

Failure Analyses Verifications

Angle Beam Flange Tip Stress Verification

Flange tip location	HyperSizer	I-DEAS
Pt A, left upper tip of long leg	4.35 ksi	4.35 ksi
Pt B, right upper tip of long leg	6.27 ksi	6.27 ksi
Pt C, OML corner of leg intersection	-11.31 ksi	-11.31 ksi
Pt D, IML corner of leg intersection	-8.09 ksi	-8.09 ksi
Pt E, right upper tip of short leg	5.34 ksi	5.34 ksi
Pt F, right lower tip of short leg	4.03 ksi	4.03 ksi

Y

Verification of Thermal Stress Including Residual Strain Effects

CASE 2: Δ T and Δ G, a uniform temperature increase of 68° F and a linear through-the-thickness temperature gradient of 50° F in/in

Location	Benchmark	HyperSizer	Benchmark	HyperSizer
	Residual	Residual	Thermal	Thermal
	strain	strain	stress	stress
	(μ-in)	(µ-in)	(psi)	(psi)
Steel top face				
Top surface	983.2	983.2	4193	4193
Midplane	100.1	100.1	4268	4268
Bottom surface	101.8	101.8	4342	4342
Aluminum middle				
Top surface	-228.8	-228.8	-3585	-3585
Midplane	-107.8	-107.8	-1689	-1689
Bottom surface	13.2	13.2	207	207
Steel bottom face				
Top surface	115.8	115.8	4940	4940
Midplane	116.7	116.7	4978	4978
Bottom surface	117.6	117.6	5014	5014

Panel Response to a Uniform Pressure -Comparison of HyperSizer to FEA

ΔZ	Mx	My	Qx	Qy	
in.	lb-in/in	lb-in/in	lb/in	lb/in	
0.263	67.54	48.33	-8.25	-6.82	
0.265	56.62*	39.32*	-9.01	-7.52	
0.265	62.03*	43.33*	-9.32	-8.2	
	∆Z in. 0.263 0.265 0.265	∆Z Mx in. lb-in/in 0.263 67.54 0.265 56.62* 0.265 62.03*	ΔZ Mx My in. lb-in/in lb-in/in 0.263 67.54 48.33 0.265 56.62* 39.32* 0.265 62.03* 43.33*	ΔZ Mx My Qx in. lb-in/in lb-in/in lb/in 0.263 67.54 48.33 -8.25 0.265 56.62* 39.32* -9.01 0.265 62.03* 43.33* -9.32	

Failure Analyses Verifications

